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1. INTRODUCTION:   

Our objective is to exploit the wealth of physiological, metabolic, morphological and molecular 
sources of optical contrast to develop novel strategies that focus on two breast cancer 
applications: tumor margin assessment and prediction of response to neo-adjuvant therapy. The 
proposed aims of this grant are expected to result in three major contributions. The first has the 
most immediate impact. An optically-based strategy that can quickly and non-destructively 
detect positive tumor margins will decrease the need for re-excision surgery and thereby 
decrease the local recurrence rate and rate of distant metastases in women electing BCS. 
Gaining insight into the physiological, metabolic, morphological and molecular sources of 
heterogeneity within and among tumors and how they are modulated by therapy, drug 
resistance and metastatic potential will directly benefit prognostication, prediction of outcome 
and planning of cancer therapies. With these tools, clinicians and clinical researchers can get a 
better understanding of this disease and how it might react to a drug. Basic science researchers 
could use it as an informed approach to study tumor biology and assay the effect of novel 
therapeutic agents in vivo. 

a. Original Statement of Work for 5 Years 

Aim 1: Optical imaging of margin morphology on breast lumpectomy specimens: To 
evaluate the role of wide-field imaging (coverage) and high-resolution interrogation (localization) 
of breast margin morphology to guide surgical resection intra-operatively and pathologic 
assessment of the tumor margin post-operatively (Timeframe: year 1-5). 

1a. Development of one optical spectral imaging system that integrates sensing capabilities 
for aims 1 and 2 and a high-resolution probe that can image absorption, scattering and 
fluorescence contrast (timeframe, year 1). 

1b. Conduct clinical studies on lumpectomy margins on 200 patients (time frame, years 2-4)  

1c. Data analysis and interpretation (timeframe, years 3-5) 

Test the sensitivity and specificity of wide-field imaging to detect positive tumor 
margins 

Test sensitivity and specificity of high-resolution probe to detect IDC and DCIS. 

 

Aim 2: Optical quantitative biology of different sub-types of breast cancer: To investigate 
biomarkers of oxygenation, carotenoids (β-carotene) and ECM proteins (collagen) in human 
breast cancer stratified by tumor sub-type and receptor status and their association with neo-
adjuvant chemotherapy response. 

2a. Development of rotating needle compatible spectroscopy probe (timeframe, year 1). 

2b.Conduct clinical studies to measure optical biomarkers in vivo in 150 patients undergoing 
surgery (timeframe, years 2-4). 

2c. Conduct clinical studies to measure optical biomarkers from 75 patients before neo-
adjuvant therapy 

2d. Data analysis and interpretation (years 3-5): 

Determine association of biomarkers with tumor subtype 

Determine association of biomarkers with receptor status 



Determine association of biomarkers with genomic signatures 

Determine association of biomarkers with pathologic sub-total and complete 
response 

 

Aim 3: Optical quantitative biology to assess therapy response in different sub-types of 
breast cancer: To investigate biomarkers of oxygenation and ECM proteins (collagen and αvβ3 
expression) in rodent breast cancer stratified by tumor sub-type, receptor status and metastatic 
potential in response to targeted and chemotherapies. 

3a. To determine if multi-parametric intra-vital optical microscopy, measuring hemoglobin 
saturation, total hemoglobin, redox ratio, collagen, and integrin expression can monitor 
tumor response to tamoxifen in parental and tamoxifen-resistant MCF-7 tumors in the 
mouse dorsal skin fold window chamber (timeframe, years 1-2). 

 A total of 40 athymic nude mice will be required for this study (10 
mice/group).  

3b. Monitor optical parameters in the dorsal skin fold window chamber in response to 
doxorubicin chemotherapy in MCF-7 parental and doxorubicin-resistant tumors 
(timeframe, years 2-3). 

 A total of 40 athymic nude mice will be required for this study. 

3c. Monitor optical parameters in the dorsal skin fold window chamber in response to 
doxorubicin chemotherapy in tumors that express high (MDA-435) and low (MCF-7) 
levels of αvβ3 integrin (timeframe, years 3-4). 

 A total of 40 athymic nude mice will be required for this study. 

3d.  Data and statistical analysis (timeframe, year 5). 

Aim 3 has been slightly revised. The revised Aim 3 is titled, “Optical imaging of tumor 
metabolism to predict long-term fate.” See page 24 within the Body for details. 

 

2. BODY: 

 Aim 1: Optical imaging of margin morphology on breast lumpectomy specimens 

In Aim 1, our objective is to develop a strategy for high resolution fluorescence imaging of tumor 
margins, and to combine that with wide-field diffuse spectral imaging in a complementary 
fashion.  For the high resolution fluorescence imaging component of the project, two years ago 
we demonstrated that preliminary application of sparse decomposition to high resolution images 
of acriflavine stained tissue shows promise for isolating individual tissue types and ultimately 
could allow for the automated detection of residual disease of surgical margins (see Aim 2 for 
additional information on high resolution imaging and development of the sparse decomposition 
algorithm). Additionally, we showed that both radiographic breast density and neoadjuvant 
status impact the spectroscopic data of the surgical margins and needs to be taken into account 
when diagnosing surgical margin status.  Last year we focused on advancing optical imaging for 
breast margin assessment by analyzing excisional time, cautery and patent blue dye on 
underlying sources of contrast in patients undergoing breast conserving surgery. Here we 



present the implementation of the 49-channel device which enables acquisition of wide-field 
images of the tumor margins in a shorter amount of time. We have made improvements to the 
system, including the implementation of pressure-sensing and raster-scanning techniques to 
minimize user-specific error, reduce false positives from margin compression during 
measurements, and improve resolution. These improvements are discussed in detail below.  

 
Introduction:  
We have previously demonstrated that wide-field optical imaging of tumor morphology detects 
positive margins (margins with IDC and DCIS) with accuracies that well exceed that of the 
breast surgeon. Here we prospectively validate the wide-field imaging system that we have 
developed and further refine our understanding of the micro-architectural differences between 
different types of tumor margin sub-types, in particular, DCIS, towards improving sensitivity and 
specificity. Our approach is to image the boundaries of the excised tumor mass, which is 
consistent with the existing paradigm for post-operative pathologic margin assessment, using 
the 49-channel device to acquire wide-field images of the tumor margins.  We showed that both 
radiographic breast density and neoadjuvant status impact the spectroscopic data of the 
surgical margins and needs to be taken into account when diagnosing surgical margin status. 
We investigated the various sources of error on the optical properties of normal tissue and how 
these changes impact the accuracy of our predictive models. We are characterizing the 
performance metrics of the 49-channel system and are continuing to recruit patients for the 
imaging protocol. These results are described in more detail below. 

Part A - Advancing optical imaging for breast margin assessment: an analysis of potential 
sources of error (excisional time, cautery, and patent blue dye) on underlying sources of optical 
contrast 

Breast conserving surgery (BCS) is a recommended treatment for early-stage breast cancer 
and for breast cancers that have been reduced in size by neoadjuvant therapy.  The goal of 
BCS is to excise the tumor along with a margin of normal tissue, while preserving as much of 
the normal breast tissue as possible.  Unfortunately, as many as 18-72% of patients undergoing 
BCS require repeat surgeries due to a close or positive surgical margin diagnosed post-
operatively and thus, require a re-excision surgery to achieve cancer free margins [1-9].  The 
large variation in re-excisions is thought to be due to differences in surgeon’s training, in the 
definition of a close margin, and in the perceived risk of focally positive margins versus 
extensive involvement [10].  

Surgery to remove the cancer and obtain clear margins is a collaborative effort between the 
surgeon and the pathologist (and in some institutions, the radiologist). In spite of this, there can 
be substantial variability in the prediction of positive margins in the intra-operative and post-
operative settings. Surgeons do not have adequate intra-operative assessment tools to ensure 
that the cancer has been completely removed at the time of first surgery.  Pathologists do not 
have adequate tools for sampling from areas on large tumor margins.  The lack of these 
capabilities represents a significant unmet clinical need for margin assessment for both the 
surgeon and pathologist.     



Optical imaging of tissue is an attractive solution to this problem because it is relatively fast and 
non-destructive.  Optical techniques can also measure features related to the histological 
landscape without the need for labels.  Before this technology can be used in an intra-operative 
setting or in a post-operative setting, systematic studies have to be performed to determine 
which surgical and post-surgical factors affect the precision and accuracy with which this 
technology maps optical contrast. This is true not only for our technology but other technologies, 
both optical and non-optical that are intended for this application. Specifically, if the technology 
is to be used on the excised margin (which is the way in which intra-operative pathology is 
performed), then there must be an understanding of how the presence of the blue sentinel 
lymph node mapping dye (referred to as patent blue dye) and cautery could influence the 
primary sources of contrast in the breast. Another important variable to characterize is the 
impact of the time delay after excision on the primary sources of optical contrast in the breast.   

In this study, we examine the effects of time after excision on the following quantitative optical 
parameters in breast tumor margins which include: [β-carotene], oxygenated and deoxygenated 
hemoglobin, total hemoglobin concentration ([THb]), the wavelength-averaged reduced 
scattering coefficient from 450-600nm (<µs’>), [β-carotene]/<µs’>, [THb]/<µs’>, hemoglobin 
saturation (HbSat), and patent blue dye.  In addition, we evaluate the effects of varying and 
patent blue dye concentration and cautery on the optical absorbers and scatterers. Finally, we 
evaluated how all of these results impact optical contrast between negative and close/positive 
margins for the purposes of breast tumor margin assessment.   

Methods: 
Details of the analysis of the diffuse reflectance data from the partial mastectomy specimens 
can be found in prior publications [11-14] and were discussed in previous reports.  Spectra were 
corrected for daily variations in optical throughput using a Spectralon reflectance standard, and 
were normalized by the CCD integration time.  An inverse Monte Carlo model [11, 15, 16] was 
used to obtain values for THb concentration, β-carotene concentration and the wavelength-
averaged reduced scattering coefficient from 450-600 nm (<µs’>), for each measured site (or 
pixel) on the specimen surface.  Upon completion of the measurements, the measured sites 
were inked for histological correlation.  The specimens were then transferred to the surgical 
pathology laboratory for routine pathologic processing, and following routine diagnostic workup 
the inked sites were evaluated microscopically by the study pathologist. The benign sites were 
classified as fat, fibro-adipose, fibro-glandular, or mixed/other; mixed/other refers to any site 
with some combination of fat, collagen, glands, or vessels.  The malignant sites were classified 
as invasive ductal carcinoma (IDC), ductal carcinoma in situ (DCIS), or mixed/other; for these, 
mixed/other refers to sites with some combination of IDC, DCIS, or lobular carcinoma.  If tumor 
cells extended to the inked surface, the margin was considered positive.  If they were within 2 
mm of the inked surface, the margin was considered close.  

Previously, the extracted tissue parameters were fit to a longitudinal mixed-effects model, which 
is an appropriate method for evaluating the trends over time in optical measurements across 
different tissue types.  Longitudinal models were performed in R version 2.7.2 (www.r-
project.org) using the lme4 package.  The fixed-effect terms in the models were the time from 
surgical excision of the specimen and the histological subtype of the measured site.  This model 



resulted in a fitted slope for every measured site.  In all tests of main effects and interactions, 
statistical significance was considered to be p < 0.05.   

From April 2013 to present, lumpectomies were analyzed from 22 patients, 11 of which we have 
received site-level pathology on, resulting in 81 sites. From March 2011 to September 2011, 
lumpectomies were analyzed from 10 patients resulting in 80 sites.  A total of 7 sites were 
excluded due to poor probe-tissue contact.  The tissue was submitted for histopathology on the 
remaining 73 sites. However, histopathology could only be obtained for 61 of the sites.  From 
May 2009 to October 2010, mastectomies from 19 patients were analyzed, resulting in 38 
individually-measured tissue sites. The optical parameters were plotted versus time for every 
site and inspected for trends; 4 sites were removed due to poor probe-tissue contact and/or 
motion artifacts observed in the data, 2 additional sites (1 patient) were removed because the 
optical measurements were made 85 minutes after excision which was much longer than the 
other sites.  Of the remaining 32 sites, 20 had microscopic histological confirmation.  Samples 
with histology confirmation were given an overall diagnosis of benign or malignant, and were 
then given a further classification by specific histological subtype.   

Results: 
We previously determined that HbSat cannot be fit with a linear model due to excessive 
changes in oxygenated and deoxygenated hemoglobin post-excision.  This is likely due to 
oxygen being consumed by the metabolically active tissue immediately after excision.  Although 
HbSat may be a useful in vivo parameter for determining tumor hypoxia, or for examining the 
local microenvironment, or even for margin assessment of the resected cavity, it is not reliable 
in ex vivo margin assessment of breast tissue specimens.  The results from both the simulated 
and phantom data for [patent blue dye] indicate that [patent blue dye] up to 80μM does not 
impact the extractions of [THb], [β-carotene], or <μs′> from the diffuse reflectance spectra; 
again, the highest concentration of patent blue dye seen in the previous lumpectomy study was 
72.7μM.  Although the errors were higher in the phantom data (as would be expected), there 
was no trend in the percent error with increasing [patent blue dye].  In terms of tissue 
cauterization, we found that initial measurements of [THb] were significantly higher in the benign 
sites of the cauterized lumpectomies compared to the mastectomies.  This initial difference 
could be due either to varying excisional times for mastectomy and lumpectomy procedures or 
due to cauterization.  Since we observed no significant correlation between the initial value and 
time from excision, we assume that this difference in [THb] is due to cauterization of the 
vasculature to prevent blood from draining out of the vessels as rapidly as it would in 
mastectomy specimens.  For all tissue parameters, the rate of change was not significantly 
different between the benign and malignant sites.  This is an important finding for margin 
assessment which indicates that optical contrast between benign and malignant regions of a 
margin will be preserved, regardless of the time when the margin is imaged over a 30 minute 
window.  We also showed that there was no correlation between the time from excision and the 
initial value (or first measurement) of the optical data.  This suggests minimal change in the data 
within the time window that we examined (17±4 minutes post-excision and measured for 10-32 
minutes).  Additionally since there was no significant difference between the lumpectomies and 
mastectomies for [β-carotene] and [β-carotene]/<μs′>, we can extrapolate these findings to 
benign and malignant tissue in cauterized lumpectomies.   



 

Part B - Clinical Study on Margin Assessment: higher resolution, coverage, and controlled 
pressure sensing in evaluating lumpectomy specimens 

It has been determined that on average 1.5 margins per patient will present with a positive 
margin upon pathological review based on a statistical analysis by our collaborating statistician.  
Since these positive margins are usually due to small, focal positive regions on the margin, it is 
imperative to optically assay the entire margin in order to ensure that these small cancer-
positive regions are detected.  To that end, we have designed and constructed multiplexed 
probes for the study; generation three contains 49 channels (Figure 1.1).  These changes have 
required modification to the probe design, and minor modification of the optical instrument.   
 
The ability to acquire data from 49 sites simultaneously will allow us to optically assay a much 
more significant area of the tissue specimen.  The system design has been further improved 
with the fabrication of an imaging platform that enables the implementation of new techniques: 
raster scanning and pressure sensing (Figure 1.2). The goal of these improvements is to 
minimize user-specific error, reduce false positives from margin compression during 
measurements, and improve resolution.  
 

  
Figure 1.1: Image of 49-Channel System and probe with 49 channels. 

 
 

 
Figure 1.2: Image of the translation stage that automates raster-scanning and pressure-sensing. 

 



 
Methods: 
System design 
The 49-Channel system consists of a 300W xenon lamp, a house-made optical switch, a 
custom built 49-ch imaging probe, and an Andor Shamrock spectrograph with a 512x512 CCD 
camera (Figure 1.3). At the common end, the 49 channels are arranged into a 7x7 array, 

covering an area of 4.2x4.2 cm2. Each probe has a single 200m fiber for light detection 

surrounded by a ring of eight 200m fibers for illumination with a source-detector separation of 

600m. The 49 pixels are divided into two sets: the odd (red) set and even (blue) set. The red 
and blue pixels are turned on and off sequentially using the optical switch. All the detection 
fibers are arranged as a linear array in order in the spectrograph adaptor. By dividing the pixels 
into two sets, we doubled the number of channels that can be imaged because no inactive 
fibers are required for spacing on the CCD.  
 
A calibration channel was also added into each set for real-time instrument calibration. 
Therefore there are a total of 51 fibers in the collection fiber bundle. The maximal number of 
channels that can be imaged is limited by the fiber diameter, CCD chip size and magnification of 
the spectrograph. In this system this number is 51x200/220 um bare fibers.  
 
 

 
 

Figure 1.3: Schematic of the 49-Channel System. 

 
Clinical study design 
Duke University Health System performs approximately 150-200 partial mastectomies annually. 
Intra operative margin assessment using the optical assay system will be carried out on 400 
patients undergoing partial mastectomies, mastectomies or reduction mammoplasties. This is a 
sufficient sample size for the purpose of determining the sensitivity and specificity of the optical 
assay system. After these specimens are evaluated with the optical assay apparatus, they will 
be submitted for routine pathology by Dr. Joseph Geradts.  
 



In order to increase the chances of measuring a positive area on the tumor, we will measure all 
sites on two margins that the surgeon identifies as most likely positive for each specimen (up to 
200 sites depending on specimen size).  This methodology gives us the best chance to detect 
positive regions on the tissue specimens without altering the clinical design.  We will employ a 
real-time spectral analysis algorithm to determine which 10 of the measured sites are most likely 
to be positive for tumor (as opposed to the random sampling); these sites will be subsequently 
inked for pathologic review.   
 
Results: 
We are now characterizing the performance metrics of the 49-channel system and comparing it 
to the clinical criteria for intra-operative tumor margin assessment. These metrics include SNR, 
sensing depth, cross-talk, reproducibility, resolution, speed, drift, phantom study accuracy, and 
channel uniformity. These results are summarized in Table 1.1. All of these performance metrics 
are being tested on phantoms, and a subset is being tested with clinical data (reproducibility and 
resolution).  
 

Table 1.1: Main system characteristics of the 49-channel system. 

System characteristic 49 CH 

Coverage per scan (cm2) 17 

Sensing depth (mm) 0.8-2.5 

Mean SNR (dB) 44.6  

Cross-talk on the CCD (%) Separating channels into 2 sets:  < 1 

Tissue cross-talk (%) 2.4 

 

Device improvements 
The system design has been further improved with the fabrication of an imaging platform that 
enables the implementation of new techniques: raster scanning and pressure sensing. The 
custom pressure-sensitive imaging platform allows the user to control the pressures that are 
maintained at the specimen to probe interface. Raster scanning allows for increased resolution 
by scanning interleaving spaces. LabVIEW software automates the acquisition such that user-
specific error is eliminated with the motorized stage that applies pressure and performs raster-
scanning. There is a trade-off between time for raster scanning and the amount of time allotted 
to measure in the clinic. This trade-off between time and raster scanning is illustrated in Figure 
1.4. These additions to the 49-channel system have been tested clinically on a cohort of 26 
patients undergoing lumpectomy and reduction mammoplasty surgeries. 

 



 

Figure 1.4: Illustration of the trade-off between improved resolution and time for measurement. 

 

Clinical data 
From April 2013 to present, we acquired images using the 49-channel system with raster-
scanning and pressure-sensing improvements in 26 patients undergoing partial mastectomy or 
reduction mammoplasty. Last year, we acquired images using the 49-channel system in 54 
patients undergoing partial mastectomy, mastectomy or reduction mammoplasty. Of these 
samples, 29 have been imaged by the high resolution microendoscope. The goal of this imaging 
protocol was to use wide field spectral imaging of the entire margin followed by high resolution 
fluorescence interrogation of optically identified suspicious sites. This year we have begun using 
a more reliable form of calibration by taking a puck measurement instead of the use of self-
calibration and have achieved higher resolution with the technique of raster-scanning, 
eliminating the need for the use of the high resolution microendoscope.  

Software has been developed to invert the diffuse reflectance spectra from the 49-channel 
system and create optical parameter maps corresponding to the probe geometry using the 
previously detailed Monte Carlo inversion algorithm [11, 15, 16] (with the Mie model for 
scattering).   The software uses both the diffuse reflectance data and the model fits to process 
the images, discarding any pixels that were not in contact with tissue or resulted in poor fitting.  
To date, we have acquired images using the 49-channel system in 26 patients undergoing 
partial mastectomy or reduction mammoplasty. An example of an analyzed margin upsampled 
with a factor of 5 (1.2mm resolution) can be found in Figure 1.5.  This sample image was of a 
small specimen located under the bottom left corner of the 49-channel probe.   
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Figure 1.5: Five sequentially downsampled images of β-carotene to scattering in a close margin (top row) versus a 
negative margin (bottom row). 

Plans for year 5:  
In year 5, we will continue recruiting patients for the imaging protocol and determine the 
accuracy of the 49-channel system in detecting positive margins. With this improved 49-channel 
system with pressure-sensing and raster-scanning capabilities, we will study the use of optical 
endpoints to determine clinical outcome.  

 
Aim 2: Optical quantitative biology of different breast cancer subtypes  

 

Part A – Duke University 

The objective of the work in Aim 2 is to use optical techniques to measure markers of the tumor 
microenvironment in women with cancers representing a wide variety of subtypes, and to 
determine whether these optical measures can be used for real time diagnosis or to predict 
eventual chemotherapy response in a subset of the patients who are measured prior to 
commencement of chemotherapy.  One such approach that we have discussed in previous 
years is to use a high resolution microendoscope (HRME) combined with a morphological stain 
called acriflavine to visualize the tissue morphology in real time. In previous years we 
demonstrated the feasibility of using the HRME for detection of residual carcinoma in the normal 
tissue milieu and validated our unique image analysis approach on preclinical murine tumor 
margin specimens and small cohort of clinical mastectomy samples. Last year, we completed a 
large study using the HRME to capture morphologically based information from biopsy 
specimens. Here we focus primarily on our quantitative approach for diagnosing HRME images 
of heterogeneous breast tissue acquired from biopsy specimens. In Year 4, we continued to 
image biopsy specimens, have identified several quantitative endpoints to distinguish malignant 
from benign tissues, and have laid the groundwork to build a diagnostic classification model.   

Optical microscopy is a powerful technique to obtain high-resolution images of tissue histology 
in real-time at the point-of-care, without the need for fixing, sectioning, and staining. Various 
optical microscopy techniques including reflectance and fluorescence[12, 17, 18], Raman[19], 
confocal[20, 21], and optical coherence tomography[22, 23] have been used to exploit intrinsic 
sources of contrast in thick tissues. Additionally, fluorescence microscopy has been combined 
with vital fluorescent stains such as acridine orange (AO)[24-26], acriflavine[27, 28], and 
DAPI[29] to visualize micro-anatomical features in skin[24], breast[29], ovarian[26], oral[27], and 
esophageal[28] cancers. All of these technologies enable rapid and completely non-destructive 
visualization of tissue histology. 

While optical microscopy is well suited to enable visualization of tissue morphology at the point 
of care, robust methods for segmentation and quantitative analysis are essential to enable 



automated diagnosis. Thus, the goal of this work is to maintain high resolution imaging of tissue 
morphology through employing fluorescence microscopy and vital fluorescent stains but to also 
develop a quantitative strategy to segment and quantify tissue features, such as nuclei and the 
surrounding tissue, which will enable automated diagnosis of thick tissues. 

There are three important criteria that have to be considered in the selection of an appropriate 
image analysis strategy. (1) If the background patterns and intensities vary greatly between 
images (i.e. if images are heterogeneous), will a method still be able to isolate features of 
interest, such as tumor nuclei? (2) Can the method resolve overlapping nuclei when attempting 
to characterize nuclear size or density? (3) Does the method require human intervention and 
supervision, thus introducing subjective bias and complexity into the analysis?  

Many approaches for cell or cell nuclei segmentation exist. A summary of the advantages and 
disadvantages of commonly used approaches for nuclei segmentation in microscopy is included 
in Table 2.1. Global thresholding approaches work well when cell nuclei do not overlap and 
background intensities are evenly distributed, and its use in isolating cell nuclei is well 
established in the literature [29-32]. However, it is also broadly recognized that global 
thresholding has many shortcomings, specifically that it has limited utility in heterogeneous 
images in which background intensities vary greatly. While global thresholding takes intensity 
information into account, it does not incorporate geometric information, such as the expected 
size or shape of nuclei. Thus, in an effort to take geometry into account, many groups have 
developed techniques that combine global and local image information, such as adaptive 
window thresholding or local maxima detection [30, 33-38], active contours [39-42], watershed 
segmentation [38, 43, 44], high pass filtering [45], and the circle transform [46]. In adaptive 
window thresholding or local maxima detection, regions or windows of the image are examined 
separately and the nuclei within each region are identified based on intensity information 
through either finding maximum intensities or applying a threshold [30, 33-38]. For 
heterogeneous images, the window size and threshold within each window should ideally vary 
across images and patients in order to effectively segment nuclei which are surrounded by 
various structures, such as muscle, adipose tissue, or other types of connective tissue. Tuning 
so many parameters on an image by image basis quickly can become unmanageable and 
introduce subjective bias into the quantification of nuclear size and density. Active contours, 
such as snakes, find the boundary of a feature by minimizing an “energy” function associated 
with the current contour that measures the contour’s curvature and enclosed area [39-42]. 
However, choosing or defining the energy function can be a complex process, and 
segmentation results are highly sensitive to this choice. Additionally, active contours require 
human intervention and supervision through manually guiding the outlining of features or 
selecting a pixel in the interior of each structure (e.g. tumor nucleus) to be extracted. In images 
that contain large collections of nuclei, this segmentation approach can quickly become 
unwieldy. Furthermore, due to the complexity of this computational technique, it is difficult to 
know when an optimal solution has been achieved. In watershed segmentation methods, an 
image is partitioned into regions separated by watershed lines. While watershed segmentation 
can identify overlapping nuclei, it is vulnerable to a well-recognized phenomenon called over-
segmentation, in which homogeneous regions are segmented into multiple different regions 
erroneously [38, 43, 44]. These effects can be somewhat mitigated via an involved parameter 



tuning process requiring significant human intervention or through variations to the watershed 
transform, such as viscous watershed [47]; generally, this is an area of active ongoing research. 
Furthermore, there are many regions in an image that are segmented via watershed methods 
that are not meaningful for our purpose of isolating nuclei within heterogeneous images. For 
example in heterogeneous images, the improper segmentation of background elements such as 
adipose or connective tissue can mistakenly be identified as nuclei, leading to incorrect 
quantitation of nuclear size and density. High pass filtering is a technique that is commonly used 
to isolate edges in images, and can be used to segment small features such as nuclei [45]. 
While high pass filtering is simple to implement and easy to tune, it is highly sensitive to noise 
present in an image. Lastly, the circle transform can be used to detect approximately circular 
objects of a specified range of radii within an image [46]. While this technique is simple and can 
identify overlapping nuclei, it assumes that objects are approximately circular and is sensitive to 
small variation in background intensity. Because of this sensitivity to small variations in the 
background, the circle transform, in isolation, is a suboptimal approach for heterogeneous 
images.  

Table 2.1. Nuclei segmentation methods 

Method Advantages Disadvantages 

Global thresholding Simple, easy to tune Requires uniform background 
intensity 

Adaptive 
thresholding 

Simple Requires varying window size across 
image and adjusting threshold within 
each window 

Active contours Can find object outlines in 
complex images 

Requires defining complex energy 
function and human intervention and 
supervision 

Watershed 
segmentation 

Can identify overlapping 
nuclei 

Results in over segmentation 

High pass filter Simple, easy to tune Sensitive to noise 

Circle transform Simple, can identify 
overlapping nuclei 

Sensitive to small variations in 
background intensity 

 

Despite the diversity of approaches, segmentation of cells and cell nuclei remains a challenge 
due to the complexity of images that have varying levels of contrast and non-uniform 
background heterogeneity, as well as overlapping nuclear features. To address this important 
need, we have developed a computational technique that leverages morphologic information 
inherent in monochrome images of fluorescently-stained microanatomy to separate and quantify 
the presence of distinct tissue types in a heterogeneous image. First, sparse decomposition 



(SD) [48] is used to separate cell nuclei, fibrous components, and adipose components. 
Second, a thresholding algorithm (TH) is applied to the deconstructed image to quantify the 
nuclear size and density as a means to identify the presence of disease in a breast biopsy 
specimen. While the TH is sensitive to small variation in the background, this effect is mitigated 
by first using SD to remove the background. This aim describes a methodology that 
systematically evaluates the potential of an image processing approach or combination of 
approaches, for a specific biomedical problem. The image processing approach chosen here is 
SD followed by TH, and the specific indication is the ability to isolate nuclei from heterogeneous 
breast biopsy images. The rationale for selecting SD is that it can segment different types of 
structures (nuclei, fibrous tissue, and adipose tissue) in complex heterogeneous images. TH 
was chosen to isolate nuclei because it can quickly be used to calculate nuclear size and 
density and is easy to tune.  It should be noted that the combination of SD+TH is not the only 
solution to this complex problem; however, it is a well-justified approach to analyzing images 
from heterogeneous tissues and certainly could be adapted to include other methods if they can 
benefit the overall approach. Unlike image processing techniques which rely solely on intensity 
information (and are thus susceptible to calibration errors), SD incorporates geometric 
information through the property of sparsity. This leads to a highly flexible approach that 
requires tuning a very small number of parameters, can resolve overlapping nuclei, and does 
not require human intervention or supervision. Additionally, this technique does not discard 
image content but rather retains all of the image information inherent in the image to preserve 
spatial relationships between tissue types, which are essential for proper interpretation of the 
images.   

Methods:   
Imaging system and contrast agent: A fluorescence microendoscope device that has previously 
been described in detail [27] was used to collect images of acriflavine stained tissues. The 
system contained a 455 nm light emitting diode (Luxeon V Star, LXHL-LR5C), excitation filter 
(Semrock, FF01‐452/45‐25) dichroic mirror (Chroma 485 DCLP), emission filter (Semrock, 
FF01‐550/88‐25), CCD camera (Point Grey Research, GRAS-14S5), and coherent fiber bundle 
(Sumitomo, IGN-08/30). The fiber bundle was composed of 30,000 fibers giving a circular field 
of view of approximately 750 µm in diameter. The resolution of the system was 4.4 µm. Images 
were produced by placing the fiber bundle in contact with the acriflavine stained tissue surface. 
Acriflavine (0.01% w/v, Sigma-Aldrich) dissolved in phosphate buffered saline (PBS) was 
topically applied to all specimens immediately prior to imaging.   

Imaging protocol: Patients undergoing a biopsy procedure at Duke University were consented.  
After the biopsy was removed from the patient, acriflavine was applied to the surface of the 
specimen. The distal end of the HRME fiber bundle was placed in contact with the tissue and 
images were acquired. The biopsy was scanned length-wise by systematically moving the probe 
in 1 mm increments over the tissue surface. Once one side was scanned, the biopsy was 
rotated 180 degrees and the length-wise scanning process was repeated. In order to improve 
the accuracy and reproducibility of these movements the fiber bundle was secured in a custom 
probe holder fiber chuck which was mounted on an x-y translation stage. Between each probe 
placement the distal end of the probe was cleaned with 55% ethanol.   



Pathologic co-registration: After the imaging session the surface of the specimen was inked for 
pathologic co-registration. In order to maintain the proper orientation of the specimen for 
pathological evaluation, each end was inked with a different color. After imaging and inking was 
complete, the tissue was returned for standard pathologic processing, and the resulting 
hematoxylin and eosin (H&E) stained slides were reviewed by an expert oncology pathologist 
who was blinded to the results of HRME imaging. A diagnosis for each end of the biopsy as well 
as a diagnosis for the middle portion of the biopsy was given.   

Image analysis. Since the most clinically relevant goal is to detect the presence of microscopic 
disease, we focused our quantitative approach on first isolating features of interest, such as 
nuclei, and then calculating features that may be used to determine the presence of tumor cells 
in an image, such as the size and density of those nuclei. In order to isolate the cell nuclei from 
other structures, such as muscle fibers/fibrous tissue or adipocytes, tissue components (nuclei, 
muscle fibers/fibrous tissue, and the outline of adipose cells) were separated computationally 
using the SD method. SD has been used previously in the image processing community for 
image compression, enhancement, and restoration, but has never been applied to separate 
distinct tissue types in a heterogeneous image. The key assumption was that each tissue 
component has a different “sparsifying” dictionary in which the expansion coefficients were 
nearly all zero, with only a few large coefficients. (For instance, an image of muscle fibers was 
relatively smooth, so it could be accurately approximated using a superposition of a small 
number of Fourier basis functions.) If the sparsifying dictionaries were sufficiently dissimilar, 
then the sparsity could be exploited to uniquely identify the different tissue components. The 
pixel dictionary was used for the nuclei to capture the small and spatially isolated nuclei. The 
discrete cosine transform (DCT), a variant of the Fourier transform, dictionary was used to 
describe muscle or fibrous components with periodic fiber structures. Adipose tissue can be 
described as localized piecewise smooth features, and therefore curvelets are well suited to 
capture adipose features. Specifically, curvelets, which are similar to wavelets, have dictionary 
elements corresponding to different scales and locations throughout an image and is relatively 
dissimilar to both the pixel and DCT dictionaries [49]. An illustration of the sparse decomposition 
algorithm applied to image containing adipose cells with nuclei scattered throughout is shown in 
Figure 2.1. In this example the DCT image is black because there is no muscle or fibrous tissue 
present in the original image.  



 

Figure 2.1: Sparse decomposition illustration. An image containing adipose cells with nuclei scattered throughout 
can be separated into its constituents through the sparse decomposition algorithm. The spatial image captures the 
randomly distributed nuclei, while the DCT image describes the periodic muscle components and the curvelet image 
captures the curved outline of adipose cells. In this example the DCT image is black because there is no muscle or 
fibrous tissue present in the original image. 

Statistical analysis: In order to compare the ability of different variables (such as nuclear size 
and density) to distinguish between malignant and benign biopsies, receiver operating 
characteristic (ROC) curves and the area under the curve (AUC) were calculated using a web-
based tool [50]. The Youden index, which is a frequently used summary measure for ROC 
curves, was calculated for each ROC curve, and the associated sensitivity and specificity is 
reported for each variable [51].  

Results:   
The breakdown of biopsies specimens imaged in this study is shown in Figure 2.2. We 
consented 56 patients and were able to image 50 biopsy specimens (we had 6 screen fails for 
various reasons). We currently have received a pathology diagnosis for 47 of the 50 (1 
pathology report is pending at this time). Out of the 47 with pathology, 42 were ultrasound 
guided biopsies in which a solid mass is detected, and 5 were stereotactic biopsies in which 
micro-calcifications are present. For the rest of the analysis, we focus primarily on the 
ultrasound guided biopsies since they yield images with superior image contrast. Within the 42 
ultrasound guided biopsies, we have 18 malignant and 24 benign specimens. The 18 malignant 
are comprised of 14 invasive ductal carcinomas (IDC), 2 invasive lobular carcinomas (ILC), 1 
ductal carcinomas in situ (DCIS), and 1 that contains both IDC and DCIS. Of the 24 benign 
biopsies, 19 contain some combination of fibrous and fat tissue. The remaining 5 benign 
biopsies are either fibroadenomas, papillomas, fibrocystic change (FCC), or have other benign 



pathologies, such as an organizing hematoma or benign lymph node.  

 

Figure 2.2: Breakdown of biopsy specimens.  

Figure 2.3 shows a representative example of a malignant and benign biopsy from our study. As 
described in the methods each side was scanned length-wise—side 1 corresponds to the top 
row and side 2 corresponds to the bottom row. In the malignant example (A), the left hand side 
contains IDC, the middle contains IDC and fibrous tissue, and the right hand side contains fat 
tissue and inflammation. As seen, large round cells, characteristic of adipose tissue, can be 
seen on the right hand side, while the rest of the panel is filled with a random distribution of 
disorganized nuclei, which is characteristic of IDC. The corresponding nuclei (spatial) output 
from SD is shown in (B). As seen, many nuclei are present throughout the panel. In the benign 
example (C), the left hand side contains fibroadipose tissue (FA), the middle contains 
fibroglandular (FG) and fat tissue, and the right hand side contains fat tissue. As seen, large 
round cells interspersed with string-like fibrous tissue, characteristic of fibroadipose tissue, can 
be seen on the left hand side, while the middle and right hand side of the panel contains 
primarily adipose and less fibrous tissue. The corresponding nuclei (spatial) output from SD is 
shown in (D). As seen, nuclei that are primarily located on the periphery of the adipose cells are 
isolated throughout the panel.  



 

Figure 2.3: Sparse decomposition (SD) applied to a representative malignant and benign biopsy. Both sides of 
the biopsy we scanned length-wise resulting in the two rows in (A) and (C). The pathological diagnosis for (A) was 
given for the left end (IDC), middle (IDC + fibrous tissue), and right end (Fat + inflammation) respectively. The 
pathological diagnosis for (C) was given for the left end (FA), middle (FG + fat tissue), and right end (Fat tissue) 
respectively. The nuclei (spatial) outputs from SD are shown in (B) and (D) respectively. Scale bar 100 µm.  

After obtaining the nuclei outputs from SD, we sought to calculate parameters, such as the 
density and size of nuclei, which could have diagnostic potential. However, in order to ultimately 
diagnose the biopsy specimens, the variables calculated for each image within a mosaic need 
to be consolidated. For example, in the malignant biopsy shown in Figure 2.3 there are 17 
images. If the nuclear density present in each image is quantified, then we have 17 density 
values (one for each image). In order to classification each biopsy as positive or negative, a 
summary statistic, such as the average nuclear density must be calculated. An outline of our 
quantitative procedure is shown in Figure 2.4.  

 



Figure 2.4: Outline of quantitative approach. After each image is put through SD, different variables are calculated 
that capture the nuclear morphology. However, variables must be consolidated such that each biopsy can be 
classified as positive or negative.   

Thus far, we have calculated a host of nuclear variables for each image, each of which is 
illustrated in Figure 2.5. Variables include nuclear density (the number of nuclei in a unit area), 
area fraction (the total nuclear area divided by the total area), minimum internuclear distance 
(the distance from the nuclei center to the next closest nuclei center), and nuclear size (the 
diameter of each nucleus).  

 

Figure 2.5: Illustration of nuclear variables. 

When consolidating of variables, such as nuclear density, we want to be sensitive to spatial 
information, such as local increases in nuclear density, which is characteristic of focal disease. 
With this in mind, we have illustrated three different consolidation strategies in Figure 2.6. The 
first is to calculate the density present within each image. While this is the most straight-forward 
and obvious approach, it may wash out contrast between positive and negative specimens 
because it loses critical spatial information. Another approach is to calculate local increases in 
density via manual window selection. While this approach retains contrast, it requires that the 
user manually select the window size and location, which can quickly become unwieldy and 
introduce user bias into the analysis. The last approach is to overlay a grid onto each image and 
calculate the density present within each bin. While this approach requires grid size selection, it 
retains density contrast and captures critical spatial information. We have applied both the 
image density and grid density approach to the 18 malignant and 24 benign ultrasound-guided 
biopsies.  



 

Figure 2.6: Different nuclear density consolidation strategies. 

In order to compare the performance of the different variables and different consolidation 
strategies, we graphed receiver operating characteristic (ROC) curves and calculated the area 
under the curve (AUC). Additionally for each combination, the Youden index was calculated, 
which yields a sensitivity and specificity associated with the ROC. The top 20 performing 
variables are listed in Table 2.2. Column 1 indicates the rank associated with the AUC. Column 
2 indicates the bin size in units of pixels. For this analysis, the bin size was varied from 10, 15, 
20, 25, 50, 100, 200, to 606 pixels, which is the size of an entire image and which signifies that 
the image density consolidation method was used. Column 3 indicates one of the four variables 
that were calculated, which include density, area fraction (AF), minimum internuclear distance 
(Mindistance), and size. Column 4 indicates the summary statistic calculated to reduce each 
biopsy to a scalar value. Possible summary statistics include calculating the mean including the 
zero-valued bins/images (mean with 0s) or excluding the zero-valued bins/images (mean 
without 0s), calculating the percentage of bins greater than some threshold x (% bins>x), or 
calculating the quantiles of a variable, which is a point measure taken at intervals from a 
cumulative distribution function (CDF) of a random variable (for example 0.5 quantile is the 
median of the distribution). Column 5 contains the AUC associated with each combination. 
Columns 6 and 7 contain the sensitivity and specificity associated with the Youden index.  

As seen, the Mindistance calculated on the image level (at a bin size = 606) with the bin 
percentage summary statistic yields the three highest AUCs. This is followed by density 
calculated on the image level with a mean without zeros summary statistic. Both density and 
Mindistance dominate the top 20 performing variables. AF is listed toward the bottom, and size 
does not appear in this table. This indicates that the density and Mindistance are the top 
performing variables for distinguishing positive from negative biopsy specimens.  

Table 2.2: Performance of different variables 

Ranking Bin size 
(pixels) 

Variable Summary 
statistic 

AUC Sensitivity Specificity 

1 606 Mindistance %bins<75 0.745 56 88 



2 606 Mindistance %bins<50 0.745 50 92 

3 606 Mindistance %bins<100 0.743 44 96 

4 606 Density Mean without 0s 0.736 56 88 

5 10 Density %bins>1 0.734 56 83 

6 606 Mindistance %bins<25 0.727 78 75 

7 20 Density %bins>2 0.725 72 71 

8 25 Density %bins>2.5 0.725 44 92 

9 606 Density 0.5 quantile 0.725 56 92 

10 15 Density %bins>1.5 0.722 56 83 

11 100 Density Mean without 0s 0.720 78 63 

12 200 Density Mean without 0s 0.720 83 54 

13 50 Density %bins>3 0.718 44 92 

14 200 Density 0.90 quantile 0.714 83 54 

15 25 Density Mean without 0s 0.704 67 79 

16 10 Density %bins>2 0.701 67 75 

17 200 Density 0.95 quantile 0.700 83 58 

18 606 AF 0.5 quantile 0.697 56 88 

19 606 Density 0.75 quantile 0.696 61 75 

20 200 Density Mean with 0s 0.694 50 88 

 

To further compare the different consolidation methods, ROCs of the best performing density 
variables were plotted and are shown in Figure 2.7. (A) shows the best density variables that 
were calculated using the image density consolidation strategy, while (B) shows the best density 
variables calculated using the grid density consolidation strategy. Lastly (C) shows the best 
performing Mindistance variables, which thus far have only been calculated with the image level 
consolidation strategy. All three plots yield comparable results with AUCs ranging from 0.696-
0.745. This indicates that the grid density and image density consolidation strategies yield 
similar performance for distinguishing positive from negative biopsies; however, both 
approaches when used together in a classification model may together yield better optimal 
performance than when used in isolation.  



 

Figure 2.7: ROCs of different variables. 

In conclusion, high resolution fluorescence imaging of acriflavine stained tissue combined with 
an algorithm that leverages sparse decomposition analysis provides a rapid, non-destructive 
and automated strategy for quantitative pathology of thick tissues with non-uniform background 
heterogeneity. Initial analysis of biopsy specimens with the grid density approach yields 



comparable performance to the image density approach. This provides a powerful alternative to 
complicated and time-intensive immunohistochemistry techniques, which require fixing, 
sectioning, and staining and which can only be diagnosed by a highly trained pathologist.   

Conclusions:  
Preliminary results show that adipocyte area is lower when adjacent to some lesions of invasive 
ductal carcinoma than in normal tissue adjacent to collageneous tissue. The findings of this 
study indicate that adipocyte size could potentially be used as an architectural biomarker to 
characterize the malignant potential of a lesion. This information could potentially aid in 
selection of targeted chemotherapeutic agents. Additional work should be done to evaluate 
clinical factors and/or genetic/epigenetic factors that correlate with adipocyte size.  
 

Plans for year 5:  

During year 5, we plan to optimize our diagnostic model to yield the optimal separation between 
positive and negative biopsies. This includes identifying additional endpoints/parameters that 
have diagnostic potential, optimizing our consolidation strategy, and ultimately building 
predictive models that can quantitatively diagnose high resolution images in real time. Together, 
this work will yield an optimized set of tools that are capable of imaging thick tissue at high 
resolution with no tissue processing and that can automatically segment and quantify those 
specimens.  

 
Part B – Rice University 

Breast cancer is a leading cause of cancer mortality in women worldwide [52, 53], and although 
most patients are diagnosed with localized cancer, tumor size and presence of metastasis 
remain the main prognostic factors for survival [53, 54]. Current imaging tools provide limited 
ability to detect early lesions and to image relevant biomarkers in situ. Thus developing novel 
strategies for early detection of invasive and metastatic disease may have a significant impact 
on reducing patient morbidity and improving survival.   

Traditional methods for early detection of breast cancer, including physical examination, 
mammography, ultrasound, and magnetic resonance imaging (MRI), are limited by low 
sensitivity and specificity for pre-malignant lesions [55-61]. In addition, these imaging methods 
do not give molecular information. As a result, histologic assessment is currently the reference 
standard for early diagnosis of breast cancer lesions and assessment of relevant biomarkers, 
which also typically requires immunohistochemical (IHC) staining. Both histologic assessment 
and IHC require biopsy, take extensive time to perform, and may need to be repeated in cases 
where lesions are missed due to sampling error. Histologic assessment has a limited ability to 
monitor response to targeted therapy, because of the need to obtain tissue specimens and the 
extensive time required to prepare and review tissue specimens.  

Optical imaging approaches have the potential to address the limitations of traditional methods 
to detect breast cancer and monitor response to therapy and can provide the ability to image 



lesions in real time with minimal invasion [27, 62-71]. With the introduction of fiber optic probes, 
images can be acquired intraoperatively or through needles with high spatial resolution to 
visualize subcellular morphology and tumor microenvironment [27, 63, 72].  It is also possible to 
add molecularly targeted, optically active contrast agents to image changes in biomarker 
expression [73].  A number of high resolution imaging approaches have been proposed to 
characterize breast lesions, including confocal reflectance and fluorescence microscopy, fiber 
optic microendoscopy (FOME).   

The long term objective of this work is to develop and apply imaging systems and molecular 
contrast agents which can be used in patients to 1) improve early detection and rapid 
assessment of breast cancer lesions, 2) aid in selection of targeted therapeutics, and 3) monitor 
the efficacy of these therapeutics in real-time. 
 
Feasibility of optical imaging techniques for imaging human breast tissue: 2011-2013 

Breast cancer development is a complex process which occurs when atypical ductal hyperplasia 
progresses to low grade ductal carcinoma in situ (DCIS), a malignant precursor to invasive 
breast cancer [74]. Identification of DCIS is important for preventing the development of invasive 
breast cancer; however, it is difficult to distinguish DCIS – a malignant lesion - from ductal 
hyperplasia – a non-neoplastic lesion [75].  
 
The current standard for breast lesion assessment is histologic assessment of tissue specimens 
stained with hematoxylin and eosin (H&E), which is limited by extensive preparation steps and 
time requirements. There is an unfulfilled need for clinical imaging tools to evaluate tumor 
margins, residual tumor in the resection bed, adequacy of core needle biopsy specimens for 
biobanking or genetic studies, and to monitor disease regression in response to treatments that 
are being tested in animal studies. Optical imaging techniques such as confocal fluorescence 
microscopy have the potential to meet these needs [69, 71, 73, 76-78]. Confocal fluorescence 
microscopy can be used in a clinical setting to acquire high resolution images of breast tissue 
architecture at near video rate. In addition, it can be performed on fresh tissue, and require 
minimal tissue preparation. The objective of this study was to determine whether images of 
fresh human breast tissue acquired with confocal fluorescence microscopy provide sufficient 
information to enable discernment of neoplastic and non-neoplastic breast features.   
 
To meet this objective, the aims of this study were to: 

a. Characterize the microscopic architecture of normal, benign and neoplastic breast 
biopsies visible using confocal fluorescence microscopy 

b. Assess diagnostic accuracy of confocal fluorescence microscopy to assess breast 
architecture compared to the standard for breast lesion assessment: histology with H&E 
staining 

c. Quantitatively analyze metrics of morphologic changes associated with progression from 
non-proliferative and hyperplastic ducts to DCIS and to compare performance of these 
metrics for classification of DCIS in confocal and histologic images. 

 
 



Methods: 
We used a commercial confocal microscope (Vivascope 2500, Caliber Imaging and Diagnostics, 
Inc.) to image resected breast tissue and needle biopsy specimens (n = 129 specimens from 67 
patients). There were 235 ROIs identified which had corresponding breast architecture in 
confocal fluorescence and histologic images. The images were assembled into a library to 
facilitate comparison between high resolution optical images and the corresponding histological 
sections (Figure 2.8).  
 
Mean fluorescence intensity was assessed for its potential to identify neoplastic lesions from 
non-neoplastic lesions in confocal images. Images were normalized by the power used for 
image acquisition. A semi-automated algorithm was developed to measure mean fluorescence 
intensity at user-defined ROIs including normal, non-proliferative ducts, hyperplastic ducts, 
ductal carcinoma in situ, and invasive ductal carcinoma.   

We developed a computerized algorithm to quantitatively analyze duct morphology in histologic 
and confocal images using parameters of ducts and lumens, including: 

i. duct wall width (mean, standard deviation, and variance) 
ii. number of lumens contained within the duct wall 
iii. major and minor dimensions of ducts and lumens 
iv. duct and lumen area 
v. duct and lumen eccentricity 
vi. duct and lumen solidity 

 
The best performing parameters for classifying DCIS from non-neoplastic ducts were identified 
using linear discriminant analysis and each parameter’s performance was assessed using 
sensitivity, specificity, and area under the curve (AUC).  

 
Results: 
We organized a subset of images in the library into a training set (n = 23 ROIs) and a validation 
set (n =49 ROIs). These sets of images were visually assessed using standard criteria for 
histologic review by 7 readers: 5 experienced pathologists and 2 pathology fellows. Validation 
study results acquired following visual review of the validation sets (Figure 2.9) indicate that 1) 
neoplasia can be identified in confocal images with high sensitivity and specificity (Se = 93%, 
Sp = 93%), and 2) neoplasia can be identified in confocal images with similar accuracy 
compared to review of histologic images (Se = 93%, Sp = 97%).  
 



 

Figure 2.8: Architecture indicative of normal breast tissue (i.e. normal ducts), benign changes (i.e. 
hyperplastic ducts), and neoplastic disease (i.e. ductal carcinoma in situ, DCIS) were identified at 
corresponding sites in histologic and confocal images. Scale bar is 100µm.  

 

Figure 2.9: Receiver operator characteristic (ROC) curve for the averaged performance of all readers in 
distinguishing neoplastic from non- neoplastic breast architectural features in conventional histologic (square 
markers, solid line) and confocal fluorescence images (triangular markers, dashed line). At the Q-point of the 
ROC curve for histology performance, the sensitivity is 93% and the specificity is 97% with an area under 
the ROC curve of 0.987. At the Q-point of the ROC curve for confocal fluorescence microscopy 
performance, the sensitivity is 93% and the specificity is 93% with an area under the ROC curve of 0.957.  

Mean fluorescence intensity was measured at sites in confocal fluorescence images illustrating 
non-neoplasia: normal, non-hyperplastic ducts (n=36) and ductal hyperplasia (n=17), and 
neoplasia: ductal carcinoma in situ (n=12) and invasive ductal carcinoma (n=25). The histologic 
diagnosis for all additional ROIs identified in confocal fluorescence images and assessed for 



mean fluorescence intensity was verified by a dedicated breast pathologist. The mean 
fluorescence intensity of DCIS (intensely stained nuclei) is higher than IDC, normal ducts, and 
hyperplastic ducts, all described with weakly stained nuclei (Figure 2.10).  

 

 

Figure 2.10: Differences in the mean fluorescence intensity of DCIS are statistically significant when 
compared to that of IDC (p = 0.007) and non-neoplastic ducts (p = 0.015). Mean fluorescence intensity 
values observed in normal ducts (26.6 ± 9.9), ductal hyperplasia (29.3 ± 8.2) and invasive ductal carcinoma 
(25.9 ± 8.8) were not significantly different (p > 0.05).  

Parameters of ducts were quantified in histologic images (n = 181 sites) and in confocal images 
(n = 80 sites) acquired from 15 patients. The parameter which best classifies DCIS in confocal 
images is median duct wall width, which separates DCIS from non-neoplastic ducts with a 
sensitivity of 71% and a specificity of 86%, corresponding to an area under the curve of 0.88. 
The combination of two parameters which result in the best separation between DCIS and non-
neoplastic ducts are median duct wall width and major duct dimension, which identify DCIS from 
non-neoplastic ducts with a sensitivity of 84% and a specificity of 84% (Figure 2.11). 
 
The parameter which best identifies DCIS in histologic images is standard deviation of duct wall 
width, which separates DCIS from non-neoplastic ducts with a sensitivity of 78% and a 
specificity of 82%, corresponding to an area under the curve of 0.85. The combination of two 
parameters which result in the best separation between DCIS and non-neoplastic ducts are 
standard deviation in duct wall width and number of lumens contained within the duct wall, 
which identify DCIS from non-neoplastic ducts with a sensitivity of 78% and a specificity of 86% 
(Figure 2.12).  
 



Parameters for quantitative analysis of duct morphology did not perform as well in identifying 
neoplastic lesions as subjective analysis by visual assessment; sensitivity, specificity, and AUC 
were lower for automated assessment in both confocal and histologic images.  

 
Figure 2.11: Classification of DCIS in confocal images. The parameter which results in the best 
separation between DCIS and non-neoplastic ducts identified in confocal images: median duct wall width 
(sensitivity = 71%, specificity = 86%, AUC = 0.88). 

 

 
Figure 2.12: Classification of DCIS in histologic images. The parameter which results in the best 
separation between DCIS and non-neoplastic ducts identified in histologic images: standard deviation in 
duct wall width (sensitivity = 78%, specificity = 82%, AUC = 0.85). 

 



Conclusions:  
In this study, we evaluated breast architecture in confocal and histologic images based on visual 
criteria used for standard assessment of histologic images. We also evaluated mean 
fluorescence intensity as a possible parameter to characterize non-neoplastic and neoplastic 
breast architecture in confocal images. Using parameters of duct architecture, we quantitatively 
analyzed duct morphology in confocal and histologic images. Although objective analysis of duct 
morphology based on physical parameters of ducts showed a poorer performance for 
identification of neoplastic lesions than subjective assessment, we will continue to develop 
these parameters with the goal of developing methods to automate breast tissue assessment.  
 
Findings of this study show that confocal fluorescence images of fresh human breast tissue 
provide sufficient information to enable discernment of neoplastic and non-neoplastic breast 
features based on visual assessment in a reader study and using mean fluorescence intensity 
and parameters of duct morphology for automated assessment. Parameters such as duct wall 
width, duct area, and number of lumens are associated with diagnostic categories of duct and 
that parameters had similar performance for classification of DCIS in both types of images. 
These data suggest that quantitative analysis of duct morphology in confocal fluorescence 
images could provide an objective way to assess duct histology and identify DCIS. This study 
has potential for use in clinical and research settings, including applications in 1) immediate 
evaluation of the adequacy of tissue core biopsy specimens procured with or without imaging 
guidance, 2) assessment of tumor margin status, which could be performed without the 
necessity for extensive tissue preparation while yielding results comparable to those of frozen 
section histology, and 3) ensuring procurement of adequate viable tumor tissue for molecular 
testing, and 4) evaluation of disease regression and progression in animal studies to assess 
novel treatment regimens. All reportable outcomes are based on this work.  

 

Adipocyte segmentation study: 2012-2013 
 

Extensive literature has shown that stromal components in the tumor microenvironment play a 
role in breast carcinoma progression and invasion [79-82]. It has recently been suggested that 
adipocytes located adjacent to tumors participate in crosstalk with invasive cancer cells through 
bi-directional paracrine signaling pathways, which affect processes such as tissue remodeling, 
adipogenesis and energy metabolism, oncogenesis, inflammation, and immune response [79].  
The objective of this study is to use confocal fluorescence microscopy to evaluate morphological 
characteristics of adipocytes adjacent to neoplastic and non-neoplastic breast tissue to 
determine if there is a correlation between adipocyte morphology and clinical diagnosis.  

Methods: 
The confocal fluorescence images of tissue specimens acquired in the previous study were 
used as the basis for quantitative evaluation of adipocyte morphology adjacent to normal 
collagen and lesions on invasive ductal carcinoma.  We developed an algorithm to automate 
segmentation of adipocyte cells, which was used to analyze adipocytes’ cross-sectional area in 
confocal images (Figure 2.13). 



Results: 
Adipocyte area was measured in a total of 10 specimens: in 5 normal specimens and 5 
neoplastic specimens.  
 

 
Figure 2.13: Automatic segmentation of adipocytes adjacent to a lesion of invasive ductal carcinoma using 
a computerized algorithm. Scale bar is 100µm. 

Preliminary results show that the mean size of adipocytes adjacent to invasive ductal tumors is 
lower than the mean size of adipocytes adjacent to DCIS foci and in normal adipose tissue 
(Figure 2.14).  



 

Figure 2.14: Preliminary results from automatic segmentation of adipocyte area measured adjacent to normal tissue 
and adjacent to tumors.  

Conclusions: 
The goal of this proposal was to develop and apply imaging systems and molecular contrast 
agents which can be used in patients to 1) improve early detection and rapid assessment of 
breast cancer lesions, 2) aid in selection of targeted therapeutics, and 3) monitor the efficacy of 
these.  
 
Confocal fluorescence microscopy was compared to histology with H&E staining for 
classification of neoplastic lesions based on visual assessment and we found that readers 
identified neoplasia in confocal and histologic with similar accuracy. We demonstrated that 
mean fluorescence intensity, a parameter of confocal images, is significantly different in DCIS 
lesions vs. invasive carcinoma and non-neoplastic ducts. Thus, we show that confocal images 
of fresh human breast tissue provide sufficient information to enable discernment of neoplastic 
and non-neoplastic breast features, which has potential to improve rapid assessment of breast 
cancer lesions 
 
Quantitative analysis of features of breast architecture, including adipocytes and ducts, shows 
that there are significant differences in breast morphology at neoplastic and non-neoplastic 
sites. We found that adipocyte area is lower when adjacent to some lesions of invasive ductal 
carcinoma than in normal tissue adjacent to collagenous tissue. Quantitative parameters of duct 
morphology such as duct wall width, duct area, and number of lumens are associated with 



diagnostic categories of duct and that parameters had similar performance for classification of 
DCIS in both types of images.  These findings indicate that physical parameters of breast 
morphology could be used to rapidly assess breast lesions and to monitor disease progression 
and regression.  
 

Plans for next year: 

Our goals for the coming year are to: 

1. Explore the ability of optical biomarkers to discriminate DCIS from benign ductal 
changes.  Our analysis will include ductal features as well as features of the surrounding 
microenvironment. 

2. Explore the correlation between optical biomarkers of early breast cancer cells and their 
surrounding microenvironment with clinical parameters, including critical hormone status 
(i.e. estrogen receptor negative, HER2 positive, and triple negative receptor status), 
histologic degree of differentiation, lymph node status, and presence of distant 
metastases.  
 

Our long term goal is to develop tools to facilitate early diagnosis of breast cancer by improving 
the ability to identify in real time whether breast biopsies have adequately sampled the lesion 
under investigation and to facilitate effective surgical treatment by improving the ability to 
adequately survey the tumor bed for residual DCIS disease.  
 

Aim 3: Optical imaging of tumor metabolism to predict long-term fate 

The currents goals of Aim 3 include the study of tumor metabolic and vascular response to 
stress in cell lines that were bound by a common theme – metastatic or non-metastatic, 
radiosensitive or radioresistant. In Year 4, we have made good progress towards achieving the 
goals stated in our previous report’s Year 4 plans. First, we published the results detailed in the 
previous report reporting the combined measurement of oxygenation and glucose uptake in 
dorsal skin flap window chambers (Rajaram PLoS ONE 2013). We found that uptake of a 
fluorescent glucose marker, 2-NBDG, was influenced by the rate at which it was delivered to 
tissue. We also found that the delivery-corrected glycolytic demand of the metastatic 4T1 
tumors was significantly higher than the non-metastatic 4T07 tumors. Second, we used a 
combination of glucose uptake and vascular oxygenation to study the radiation response of 4T1 
tumors (Zhong Radiation and Oncology 2013). We found a large increase in vascular 
oxygenation and a corresponding increase in 2-NBDG uptake indicating a potentially aerobic 
glycolysis phenotype. Aerobic glycolysis has been implicated as a cause for resistance to 
radiation. Our future work entails determination of long-term outcome in animals that show an 
aerobic glycolysis phenotype.  

Third, to further study the effects of delivery of 2-NBDG uptake and how the delivery rate could 
be used to correct glycolytic demand, we carried out a series of experiments in normal tissue 
where we varied the dose of 2-NBDG injected and used a stereoisomer of 2-NBDG to measure 



the delivery and uptake of a non-specific marker – 2-NBDLG. Based on these experiments, we 
derived a delivery-corrected ratio glycolytic demand term that more accurately represents in vivo 
glycolytic demand. These data are currently in preparation for manuscript submission.  

Finally, we determined the feasibility of clinically translational optical spectroscopy to 
noninvasively quantify in vivo glucose uptake in tissue and solid tumors. We found that optical 
spectroscopy was exquisitely sensitive to 2-NBDG absorption and not just fluorescence. 2-
NBDG absorption was significantly different in tumors compared to normal tissue and increased 
proportional to fasting duration. These results are currently in preparation for manuscript 
submission.  

Our progress in Aim 3 is divided into sections – High-resolution imaging and optical 
spectroscopy. 
 
Part A: High resolution imaging of tumor microenvironment 

Introduction:  

The future of cancer management lies in the development of effective tumor-specific therapy. 
Every year, thousands of benign cancers such as ductal carcinoma in situ (DCIS) are managed 
the same way as more malignant forms of breast cancer. Efforts in the cancer community have 
been devoted to developing ‘personalized medicine’ by characterizing the genomic profiles of 
tumors. However, it is becoming evident that a single tumor can exhibit large spatial 
heterogeneities in genotype, making genomic profiling-based treatment a tough task [83]. 
Tumors of the same organ also differ in the hallmarks they exhibit, such as loss of function of 
tumor suppressors or gain of function of oncogenes. In spite of these variations in molecular 
events and signaling pathways, almost all cancers exhibit a common phenotype – increased 
glucose metabolism relative to normal cells [84]. Although the switch to glycolysis is mediated 
by hypoxia and hence, hypoxia-inducible factor (HIF) activity,[85] several tumors retain the 
same phenotype even in the presence of oxygen – a phenomenon first observed by Otto 
Warburg and hence named the Warburg effect or aerobic glycolysis [86]. 

Developing a strategy to image the tumor microenvironment is important for two reasons. First, 
the microenvironment provides clues about the cancer cells and their current state (diagnosis). 
Second, it provides a window into what might happen next because the tumor microenvironment 
itself causes changes to cell behavior (long-term behavior). 

Our long-term goal is to determine whether the oxygenation-metabolic demand relationship 
changes in a tumor in response to stress and whether this response or change can be indicative 
of long-term tumor behavior. In this report, we describe the steps we have taken to progress 
towards our goal and lay out our plan for the next year. 

Methods:  

In vitro cell culture 

4T1 and 4T07 murine mammary adenocarcinoma lines were cultured in Dulbecco’s Modified 



Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% antibiotics. 
For imaging experiments, the cells were trypsinized and seeded on 60mm tissue culture plates 
24 hours before imaging according to established protocols. 

Dorsal skin flap window chamber model 

All in vivo experiments were conducted according to a protocol approved by Duke University 
Institutional Animal Care and Use Committee. We surgically implanted titanium window 
chambers on the back of female athymic nude mice (nu/nu, NCI, Frederic, Maryland) under 
anesthesia (i.p. administration of ketamine (100 mg/kg) and xylazine (10 mg/kg)). We injected a 

20 L suspension (20,000 cells) of 4T1-RFP or 4T07 cells into the dorsal skin fold and placed a 
glass coverslip (dia = 12 mm, No. 2, Erie Scientific, Portsmouth, New Hampshire) over the 

exposed tissue. In a separate group of control mice, we injected 20 L of saline. All animals 
were housed in an on-site housing facility with ad libitum access to food and water and standard 
12-hour light/dark cycles. A flowchart depicting the experiment protocol is presented in Figure 
3.1. For baseline measurements, the animals were kept in a chamber filled with 21% oxygen for 
6 hours. For cycling hypoxia, the animals were exposed to alternating 1-hour cycles of 21% 
oxygen and 10% oxygen for 6 hours. During this 6-hour period, the animals were only provided 
with water. For in vivo studies alone, 4T1 cells were transduced by retroviral siRNA to 
constitutively express the red fluorescent protein (RFP) DsRed, allowing easy demarcation and 
growth tracking of tumor cells in vivo. 

Radiation studies 

Mice were injected with 4T1 tumor cells that were stably transfected with red fluorescence 
protein under control of a constitutive promoter (RFP), allowing tumors to be visualized using 
intravital fluorescence microscopy in skinfold window chambers. Mice were randomized to 
receive SOD mimic treatment +/- radiation, or no treatment. The study design is shown in Fig. 
3.1. Tumor areas were measured by identifying pixels that were positive for RFP.  There was 
not a significant difference in tumor area between the treatment groups (p > 0.05). After IV 
injection of 2-NBDG, the average fluorescence of 2-NBDG for tumor (defined as RFP (+) pixels) 
was recorded for 75 minutes. Signal Enhancement Ratio (SER) values for each tumor was also 
calculated for all mice. The distributions of SER values on a pixel by pixel basis for each animal 
were used to generate cumulative frequency histograms. These values were compiled for each 
group. This method of analysis facilitates comparisons between treatment groups and has been 
used previously by Hardee et al [87].  
 



 
Figure 3.1. Study design of the radiation studies. Not shown here is a separate group that received only the HIF-1 
inhibitor. 

 
Hyperspectral imaging of oxygen saturation and glucose uptake 

A schematic of our study design is shown in Fig. 3.1. We used a Zeiss Axioskop 2 microscope 
for recording all images. At the end of 6 hours of fasting, we initially recorded trans-illumination 
images, RFP fluorescence (for 4T1-RFP cells) and corresponding background images. In 
addition, a free space trans-illumination image using appropriate neutral density filters was 
recorded before every imaging session to account for daily variations in light intensity. The 

animals were administered a 100 L tail-vein injection of 2-NBDG (6mM; MW: 342.16) dissolved 
in sterile saline.  We recorded the 2-NBDG fluorescence 75 minutes as follows: Continuously for 
the first 8 minutes, every 30 seconds for the next 30 minutes and every 3 minutes for the final 
35 minutes of imaging. A modified form of the Beer-Lambert law that describes absorption of 

chromophores in thin slices is fit to the trans-illumination image cube (x,y,) to obtain the 
concentration of the primary absorbers – oxy [O2Hb] and deoxy-hemoglobin [dHb] at each pixel 
[88]. This is possible due to knowledge of the extinction coefficients of both absorbers. Based 
on this information, we can calculate total hemoglobin content [THb = O2Hb + dHb] and oxygen 
saturation of hemoglobin [HbSat = O2Hb/THb] at each pixel. Because THb is negligible in tissue 
space (hemoglobin exists in blood vessels only), we used THb to segment the blood vessels 
and create a map of vascular HbSat.  



 

Figure 3.2: Methods. A. Flowchart describing study design. B. Sample size for the study. C. Illustration of hypoxia 

protocol. D. 2-NBDG fluorescence images are acquired continuously for a period of 75 minutes to construct a (x,y,) 
data cube. B) At each (x,y) pixel location, a time course of 2-NBDG uptake can be obtained. Based on the time 
course, three metabolic parameters can be calculated: the initial rate of delivery (RD), rate of clearance (RC), and 
glucose uptake (2-NBDG60). C) Trans-illumination image cube of hemoglobin absorption is obtained from 520-620 
nm. Total hemoglobin content is calculated pixel-wise by fitting a Beer-Lambert equation to the hyperspectral dataset. 
Knowledge of the wavelength-dependent extinction coefficients of hemoglobin allows calculation of oxy-hemoglobin 
and deoxy-hemoglobin concentrations. The ratio of oxy-hemoglobin to total hemoglobin concentration is the vascular 
oxygenation (SO2). 

 
Results:   

Radiation induced metabolic changes coincide with reoxygenation, suggesting aerobic 
glycolysis [89] 
 



 

Figure 3.3. Radiation increases glucose uptake and oxygenation in irradiated 4T1 tumors. A. Representative 
SER image for all treatment groups: a) No treatment, b) Radiation alone, c) SOD mimic and Radiation, d) SOD mimic 
alone. B. Cumulative distribution functions of SER values for all treatment groups indicate that SER values for 
radiation only group are significantly higher (p < 0.007) than the other groups, which are not statistically different. 
Error bars depict standard error of the mean. C. Histogram displaying tumor vascular hemoglobin saturation in each 
treatment group. The y-axis represents the frequency of the pixels determined to be vasculature that displayed the 
corresponding hemoglobin saturation on the x-axis. The no treatment control group appeared to have a significantly 
lower hemoglobin saturation compared to the other three groups (p = 0.009), which were not statistically different 
from each other. 

It is has been previously shown that HIF-1 activity and consequent anaerobic metabolism 
increased approximately 12-24 hours after radiation in the 4T1-RFP tumor line. The increase in 
HIF-1 activity was associated with reoxygenation induced reactive oxygen species [90, 91]. 
Since HIF-1 is known to regulate most enzymes involved in glycolysis, we sought to determine 
whether a reduction in reactive species via the use of the SOD mimic, MnTnBuOE-2-PyP5+, can 
reduce glucose demand. Tumors in the irradiated group had higher peak 2-NBDG fluorescence 
compared with the no treatment control, at 3 and 6 minutes (p < 0.05). SER values obtained 
from the irradiated group were significantly higher (p = 0.007) than the other experimental 
groups, which were indistinguishable from each other (Fig. 3.3). Given that radiation appears to 
alter tumor glucose demand, we sought to determine whether these changes could be 
correlated temporally with reoxygenation. Hyperspectral images captured from the tumors were 
used to simultaneously calculate hemoglobin saturation of the tumor vasculature and 2-NBDG 
fluorescence. The tumors in the irradiated treatment groups displayed significantly higher 
hemoglobin saturation than the no treatment controls (p = 0.009). These findings strongly 
suggest that the radiation treatments increased tumor oxygenation. The SOD mimic only group 
appeared to display improved oxygenation as well, consistent with previous findings elucidating 
its anti-HIF/VEGF effects [92]. Altogether, these results are consistent with previous views 
regarding post-radiation tumor reoxygenation [90, 93, 94]. The finding that irradiated tumors 
increase glucose consumption in the presence of reoxygenation strongly suggests initiation of 
glycolysis rather than oxidative phosphorylation. Additionally while the treatment group receiving 
radiation concurrently with the SOD mimic demonstrates elevated hemoglobin saturation 
consistent with reoxygenation, the tumors demonstrate lower glucose demand. Consequently, 



this data additionally suggests that post-radiation aerobic glycolysis was prevented by 
scavenging of oxidative reactive species and downstream HIF-1 upregulation, without 
compromising the reoxygenation process. 

2-NBDG delivery (RD) and uptake (2-NBDG60) in vivo are influenced by changes in blood flow 
[95] 
 

 
 
Figure 3.4: Effect of breathing hypoxic gas on vascular oxygenation and glucose uptake of 4T1 and 4T07 
tumors.  A and B. Representative intravital images of vascular oxygenation (SO2) and glucose uptake from 4T1 and 
4T07 tumors at baseline and after breathing hypoxic gas (10% O2, rest N2). White dotted line in each image 
represents the tumor. C. The change in SO2 of 4T1 and 4T07 tumors after hypoxia is strongly correlated with a 
change in oxy-hemoglobin concentration (r = 0.87; p = 0.001). D. Breathing hypoxic gas caused a significant increase 
in RD of 4T1 tumors (p = 0.002). E. There was significant increase in RC of 4T1 and 4T07 tumors after breathing 
hypoxic gas. Each set of bars in D and E represents data from one animal at baseline and after hypoxia (5 animals 
per cell line). 
 
 
Figure 3.4 shows representative images of SO2 and 2-NBDG60 from the 4T1 and 4T07 tumors 
at baseline and after breathing hypoxic gas (hyperemia).  Breathing hypoxic gas significantly 
increased SO2 of the 4T1 tumors (p = 0.03). Although SO2 in 4T07 tumors increased after 
hypoxia, this was not statistically significant (p = 0.06). The increase in SO2 was strongly, but 
negatively associated with baseline SO2 in both cell lines (r = 0.74, p = 0.01). Further, the 
increase in SO2 was driven by an increase in [HbO2] (r = 0.87, p = 0.001), reflecting increased 
blood flow in both cell lines after breathing hypoxic gas. The increased blood flow caused a 
significant increase in RD of 4T1 tumors (p = 0.002) and RC of the 4T1 (p = 2x10-4) and 4T07 
tumors (p = 0.03). At baseline, mean 2-NBDG60 of the 4T1 tumors is significantly higher than the 



4T07 tumors (p<0.05). After breathing hypoxic gas, mean 2-NBDG60 decreases in the 4T1 
tumors and increases in the 4T07 tumors. Because 2-NBDG60 was not directly correlated with 
SO2, these data imply that the RD of 2-NBDG influences uptake in both the 4T1 and 4T07 
tumors. However, there does not appear to be a simple relationship between the two 
parameters. Therefore, the relationship between RD, RC and 2-NBDG60 for the 4T1 and 4T07 
tumors was analyzed next.  
  
RD in excess of glucose consumption rate leads to lower 2-NBDG60 

 

Figure 3.5: Relationship between SO2, RD, RC and 2-NBDG60 for 4T1 and 4T07 tumors. A. Contour plots showing 
the relationship between delivery, clearance and uptake of 2-NBDG. RD and RC represent the x- and y-axes, 
respectively, while 2-NBDG60 represents the z-axis projecting out of the x-y plane. For the 4T1 tumors at baseline, 2-
NBDG60 increases with RD at low values of RC. At higher values of RC, 2-NBDG60 reaches a maximum at RD = 2.5 s-1, 
levels off and then declines gradually for increasing RD. After hypoxia, a secondary maximum is seen at very high 
values of RD (RD > 6 s-1) and low RC. In the 4T07 tumors, 2-NBDG60 increases with RD and reaches a maximum at 
approximately 6 s-1. The same feature is also present after hypoxia. At higher values of RC, 2-NBDG60 was nearly 
negligible for increasing values of RC. B. A summary of possible relationships between NBDG60, RD, RC, and SO2 and 
final outcome corresponding to each combination. 
 
Figure 3.5 presents the relationship between RD, RC and 2-NBDG60. RD and RC represent the x- 
and y-axes, respectively, while 2-NBDG60 represents the z-axis projecting out of the x-y plane. 



The data shown here are from all tumors within a group.  For the 4T1 tumors at baseline, the RD 
range is 0.5 - 3 s-1. 2-NBDG60 is lowest when RD and RC are low (lower left quadrant) and 
corresponds to poorly oxygenated tumor regions, indicating perfusion-limited uptake. When RD 
increases, there is a corresponding increase in 2-NBDG60 and RC, indicating higher uptake due 
to improved delivery. When RD exceeds approximately 2.5-3 s-1, 2-NBDG60 plateaus and 
declines with any further increase in RD. This effect is observed clearly at high values of RC 
(>0.2 s-1). The inflection point in the 4T1 tumors at baseline of 2.5-3 s-1

 is approximately equal to 
the glucose consumption rates calculated in vitro, demonstrating that RD in excess of the 
glucose consumption rate leads to a decrease in 2-NBDG60. After hypoxia, the RD range 
extends to 6s-1. The 4T1 tumors exhibit a similar decline in 2-NBDG60 beyond the glucose 
consumption rate; however, there is a slight shift in this inflection point to ~4s-1, suggesting an 
increase in the glucose consumption rate after breathing hypoxic gas. Due to higher rates of 
delivery in the 4T07 tumors, regions with RD values < 3.5 s-1

 are mostly absent and the inflection 
point is not observed. Similar to the 4T1 tumors after hypoxia, a 2-NBDG60 maximum exists at 
high RD (> 6 s-1) and low RC (< 0.15 s-1). This is also observed in the 4T07 tumors after hypoxia. 

The table in Fig. 3.5 summarizes the interplay seen in the contour plots between the three 
metabolic endpoints and their relationship to SO2. Regions of low 2-NBDG60 do not necessarily 
mean anoxic tissue and delivery limitations; they can also indicate regions of high SO2 with 
delivery rate exceeding the glycolytic rate. Similarly, a high level of 2-NBDG60 may not mean 
hypoxic tissue with great demand; it could potentially indicate tumors demonstrating aerobic 
glycolysis. 

Delivery-corrected 2-NBDG uptake provides a better representation of glycolytic demand 
 

 

Figure 3.6. Variation in injected dose affects 2-NBDG uptake in normal murine tissue. At early timepoints, 2-
NBDG fluorescence scales linearly with injected dose (2mM<6mM, p=0.05 ;6mM<10mM p=0.01). At late timepoints, 
10mM fluorescence is still greater than 2mM or 6mM (p=0.05), though the intensity dose not scale proportionally with 
dose. 

Figure 3.6 shows group averages of fluorescence intensity for three different concentrations of 
2-NBDG measured in normal murine window chambers. 2-NBDG was injected at concentrations 
of 2, 6, or 10mM and imaged for 75 minutes. Average values by concentration show that, in 
normal tissue, fluorescence intensity scales linearly with dose at early timepoints after injection 



(2mM<6mM, p=0.05 ;6mM<10mM p=0.01), indicating that early fluorescence is dominated by 
injected dose. By 60 minutes, fluorescence intensity is no longer proportional to dose, but some 
delivery effect persists and must be taken into account (10mM > 2 or 6mM, p=0.05). The study 
in normal tissue confirms our previous studies in tumors that indicated that delivery effects are 
an important consideration when calculating the glucose demand of tissue in vivo. 

 

Figure 3.7. Dose-corrected 2-NBDG uptake accurately reports on demand in normal murine tissue. A. 
Representative images show NBDG60, Rd, and NBDG60/Rd for normal tissue injected with 2-NBDG or the control 2-
NBDLG. B. An uncorrected curve shows group averages of fluorescence intensity over time are similar for 2-NBDG 
or control 2-NBDLG. C. Fluorescence intensity corrected by delivery clearly shows increased demand for 2-NBDG 
relative to 2-NBDLG. D.-F. NBDG60, Rd, and NBDG60/Rd separated by mouse show gives a clear view of high 2-
NBDG demand relative to 2-NBDLG demand in each mouse. n=3 mice per group. 

Figure 3.7 demonstrates our use of the 2-NBDG control, 2-NBDLG, in normal murine window 
chambers. 2-NBDLG has the same fluorescence properties as 2-NBDG, but it is not recognized 
or transported into the cell by GLUT receptors. As seen in the top row of images in Figure 3.7A, 
if not corrected for delivery, 2-NBDG and 2-NBDLG uptakes look comparable 60 minutes after 
injection, indicating that demand is similar for both fluorophores. However, when uptake at is 
corrected for delivery (Rd), 2-NBDG demand far exceeds 2-NBDLG demand in each mouse 
(Figure 3.7A). Averaged curves show un-corrected fluorescence intensity (Figure 3.7B) and 
fluorescence intensity corrected by rate of delivery (Figure 3.7C) for 2-NBDG and 2-NBDLG. 
Error bars show standard error. By 60 minutes, the corrected graphs accurately report on 
demand, which should be close to zero for 2-NBDLG after wash-out of the extracellular probe, 
and demand-dependent for 2-NBDG. The bottom row of charts (Figure 3.7D-F)shows NBDG60, 
Rd, and NBDG60/Rd separated by each mouse treated with either 2mM 2-NBDG or 2mM 2-



NBDLG. Correcting for high delivery and flurorescence of 2-NBDLG magnifies the difference 
between high demand (2-NBDG) and no demand (2-NBDLG). 

 

Figure 3.8. Dose-corrected 2-NBDG uptake distinguishes tumor types across a range of tumor sizes. A. 
NBDG60 as a function of tumor size for 4T1 and 4T07 murine mammary tumors. 2-NBDG uptake increases 
significantly with tumor size for 4T07 tumors. B. Rate of delivery does not correlate with tumor size in either tumor 
line. C. Correcting for delivery leaves no dependence on tumor size, but distinguishes 4T1 from 4T07 (p=0.006). 
Tumor size was calculated as the ratio of tumor-positive pixels divided by total murine tissue pixels in a given murine 
window chamber image. n = 8 mice/tumor type. 

Figure 3.8 shows a comparison of 4T07 and 4T1 murine mammary tumors, as a function of 
tumor size (tumor pixels/total tissue pixels). Only the 4T07 tumor line shows dependence of 2-
NBDG uptake on tumor size, as 4T1 tumors tend toward high glucose uptake regardless of 
tumor size. Interestingly, rate of delivery does not show a significant dependence of tumor size 
in either line. After correcting for delivery, the two tumor lines are clearly distinguished, with the 
highly metastatic 4T1 line showing consistently higher corrected uptake than the 4T07 tumors, 
which display behavior similar to normal tissue. Though there seems to be no dependence of 
corrected uptake on tumor size, this is consistent with our expectation that Rd may be able to 

correct for changes in perfusion that occur with angiogenesis during tumor growth. It should be 
noted that NBDG60 alone can distinguish the two tumor types in this study (p=0.03), but 
correcting for delivery decreases the intra-group variation and makes the separation between 
groups much more apparent (p=0.006). 

Part B: Optical spectroscopy for clinical translation 

Introduction 
The classical approach to measurement of aerobic glycolysis involves glucose uptake and 
lactate production in the presence and absence of oxygen; cells inclined towards aerobic 
glycolysis show little to no change in glycolytic endpoints under hypoxic conditions. Studies in 
vivo have typically involved correlating specific oncogenic mutations that promote aerobic 
glycolysis with aggressive tumor growth (by measuring tumor volume) or staining excised tumor 
slices for markers of hypoxia after imaging with FDG-PET. Given the dynamic nature of 
changes in a tumor and especially in response to therapy, it is important to be able to repeatedly 
measure tumor bioenergetics in vivo and not just oxygenation or tumor glucose demand. Such a 
technique can be beneficial for studying tumor response to therapy and understanding changes 
in the tumor micro-environment in pre-clinical animal models. Here, we describe our efforts to 
develop a spectroscopic approach to measuring tumor bioenergetics in vivo. Our goal is to 



translate findings from high resolution imaging of the tumor microenvironment to rapid, point of 
care technology. 
 
Methods 
Tissue-simulating phantoms 

Tissue simulating phantoms that had varying amounts of absorption, scattering and 
fluorophore concentrations were prepared. Hemoglobin (H0267, Sigma-Aldrich Co., St. Louis, 
MO) was used as the non-fluorescent absorber and 1 μm monodisperse polystyrene spheres 
(1-μm diameter, Catalog No. 07310, Polysciences, Warrington, PA) were used as the scatterer 
in tissue mimicking phantoms. Mixing known volumes of stock hemoglobin (absorber) solution 
and microsphere suspensions, in deionized (DI) water with stock fluorophore solution allowed 
accurate control of the final absorption, scattering and fluorescence properties in each phantom. 
The absorption spectra of the stock HbO2 and stock fluorophore solutions (measured using a 
spectrophotometer (Cary 300, Varian, Inc.) were used to determine the final absorption of the 
phantom, while the values of the reduced scattering coefficients in the phantoms were 
calculated from the Mie theory for spherical particles using freely available software. 2-NBDG 
(N13195, Invitrogen, Carlsbad, CA), and Rhodamine B (R6626, Sigma-Aldrich Co., St. Louis, 
MO) was added in increasing concentrations from 2 to 40 µM. A scattering level of 10 cm-1 and 
two different hemoglobin concentrations of 9 and 18 µM were used.  

Normal mice and solid tumor studies 

Six to eight week old female athymic nude mice (nu/nu, NCI, Frederic, MD) weighing 20-25 g 
were used in these studies. Animals were housed in an on-site housing facility with ad libitum 
access to food and water and standard 12-h light/dark cycles. All dosing experiments were 
conducted during the day and mice were fasted for 6 hours prior to optical measurements. 
Fasting ensured that glucose in the body did not compete with 2-NBDG uptake and good signal 
contrast from the tumor compared to normal tissue. Groups of 5 normal mice were injected with 
increasing concentrations of 2-NBDG (6, 12, 24, 36 and 48 mM). Mice in the 4T1 group 

received a subcutaneous injection of 750,000 4T1-RFP cells in an injection volume of 100 l. 

Flank tumors were monitored every other day and allowed to grow to a volume [/6 x length x 
(breadth)2] of 200 mm3. A total of 5 tumor-bearing animals were injected with 6 mM of 2-NBDG. 
A volume of 100 µl of 2-NBDG was injected systemically through the tail-vein of the mouse. For 
the 12 hour fasting group, mice that were fasted for 12 hours, spectroscopic measurements of 
reflectance and fluorescence were performed in the morning on non-fasted mice. 2 days later, 
mice were fasted overnight for 12 hours prior to spectroscopic measurements. Blood glucose 
levels were measured by a tail-vein prick using a commercially available blood glucose meter 
(Freestyle), prior to optical measurements. Mice were not anesthetized during measurement of 
blood glucose to avoid effects of isofluorane on initial blood glucose levels. During the 12-hour 
fasting period, animals were only provided water. 

Optical spectroscopy and quantification of oxygen saturation and glucose uptake 

The optical spectroscopy instrument has been described previously [96]  and consists of a 450 
Watt Xenon lamp coupled to a monochromator (Jobin Yvon Horiba), a fiber-optic probe 



(designed in-house and custom built by RoMack Inc.), a spectrograph (Jobin Yvon Horiba), and 
a 2D CCD camera (Jobin Yvon Horiba). The fiber-optic probe consisted of 19 illumination fibers 
(diameter = 200 mm; NA = 0.22) surrounded by 18 collection fibers (diameter = 200 mm; NA = 
0.22). The sensing depth of the probe was estimated from tissue-like phantoms to be 
approximately 1-2 mm. The optical instrument was always allowed to warm up for at least 30 
minutes before initiating measurements. The optical probe was stabilized to avoid probe 
bending--associated changes in lamp throughput and systematic errors. Because changes in 
lamp throughput could affect optical measurements, reflectance and fluorescence spectra on 
each day were calibrated using a 20% reflectance standard (Spectralon, Labsphere) and a 
fluorescence reflectance standard (USF 210-010, Labsphere Inc.), respectively. Specifically, 
tissue reflectance spectra were divided, wavelength by wavelength, by the reflectance spectrum 
measured from the standard. The reflectance standard measurement also corrects the tissue 
reflectance spectra for the wavelength response of different system components. Fluorescence 
spectra were divided by the fluorescence intensity at 540 nm measured from the fluorescence 
standard. To correct the fluorescence spectra for wavelength response, the fluorescence 
spectrum from a NIST-approved tungsten calibration lamp (Optronic Laboratories Inc., Orlando, 
FL) was measured using the optical instrument and divided by the manufacturer-provided 
spectrum to obtain a correction factor. Tissue fluorescence spectra were multiplied by this 
correction factor to calibrate the wavelength-dependent response of the monochromators, fiber 
bundle and PMT. Because 1-3 mice were imaged on a given day for a total duration of 5 hours, 
standard measurements were performed prior to optical measurements on each mouse.  

Mice were anesthetized using a mixture of isofluorane and room air (1.5% v/v) throughout the 
course of the optical measurements. Optical measurements were obtained by placing the fiber-
optic probe on the skin covering the right flank of the mouse. Optical measurements on each 
mouse were acquired continuously for a period of 75 minutes.  The probe was stabilized with a 
clamp and care was taken to ensure that pressure was not applied on tissue. Reflectance 
spectra were acquired from 390 – 650 nm (acquisition time: 0.05 s) and fluorescence emission 
spectra were acquired from 510 – 620 nm (acquisition time: 5 s) using excitation at 490 nm. 
Although 2-NBDG is maximally excited at ~ 475 nm, an excitation wavelength of 490 nm was 
used to minimize fluorescence excitation of endogenous FAD. Prior to 2-NBDG injection, 
baseline reflectance and fluorescence spectra were measured from the tissue site of interest. All 
the measurements for both phantom and animal studies were acquired in a dark room. 

 



Figure 3.9: OPT-SPX instrumentation and algorithm. A. OPT-SPX instrument used to collect serial reflectance 
and fluorescence measurements in pre-clinical and clinical models. B. Flowchart describing the extraction of tissue 
optical properties and fluorophore concentrations. MC model of reflectance is initially fit to measured reflectance 
spectra to estimate optical properties such as scattering coefficient, Total hemoglobin and SO2. These optical 
properties are used to remove scattering and absorption effects from measured fluorescence. The resulting intrinsic 
fluorescence is compared to a calibrated fluorescence tissue phantom to extract fluorophore concentrations. 

A scalable inverse Monte Carlo model was used to extract tissue scattering, absorption and 
native fluorescence of 2-NBDG from in vivo optical measurements. The reflectance and 
fluorescence-based inverse Monte Carlo models have been described in detail previously [97-
100]. Further, the fluorescence model has been validated for both single and multiple 
fluorophores in the sampled medium [100]. A flowchart describing the entire process is 
presented in Fig. 3.9B. Because the Monte Carlo model operates on an absolute scale and the 
tissue measurements are relative to a reflectance standard, a reference phantom with known 
optical properties is necessary to accurately scale tissue optical properties. Based on a series of 
phantom studies using the optical instrument and fiber-optic probe described here, a reference 
phantom was selected based on low errors in extracting tissue absorption and scattering. The 
inverse model assumes oxygenated and deoxygenated hemoglobin as absorbers and uses the 
widely-used extinction coefficients to calculate absorption coefficients (units of cm-1). Tissue 
scattering is assumed to be primarily due to cells and its associated components and is 
calculated from scatterer size, density, and the refractive index of the scatterer and surrounding 
medium using Mie theory for spherical particles. The inverse component works by adaptively 
fitting the modeled diffuse reflectance to the measured tissue diffuse reflectance till the sum of 
squares error between the modeled and measured diffuse reflectance is minimized. 

Optical spectroscopy is highly sensitive to 2-NBDG absorption in vivo 

 

Figure 3.10: Monte Carlo inverse model can accurately extract 2-NBDG and Hb concentrations in tissue-



simulating phantoms. A. Absorption spectra of hemoglobin and 2-NBDG. B. Measured data and corresponding MC 
model fits. C. Extracted 2-NBDG concentrations show excellent agreement with expected 2-NBDG concentrations for 
different hemoglobin absorption levels. D. The MC model accurately extracts hemoglobin concentration in two 
different phantoms.  

  
Figure 3.10 illustrates the results of applying the Monte Carlo inverse model of reflectance to 
tissue-simulating phantoms containing hemoglobin and increasing concentrations of 2-NBDG (2 
– 40 µM). Two different hemoglobin absorption levels and the same level of scattering 
(polystyrene beads) were used for these experiments. The data show good fits of the MC model 
to the measured data, resulting in excellent measurements of [Hb] and 2-NBDG in solution. This 
indicates that the MC model of reflectance is highly sensitive to 2-NBDG absorption in vivo. 

 

Figure 3.11: Optical spectroscopy is sensitive to 2-NBDG absorption in vivo A. 2-NBDG kinetics for different 
injected concentrations of 2-NBDG ranging from 6-48 mM. 2-NBDG absorption reaches a peak at approximately 10-
15 minutes and decays to a steady state by 60 minutes.  B. Extracted 2-NBDG absorption levels at 60 minutes for 
each concentration show excellent sensitivity of the technique to 2-NBDG absorption in vivo. C. Fasting increases 2-
NBDG absorption in a duration-dependent manner. D. 2-NBDG absorption is higher in 4T1 tumors compared to 
normal tissue.   
 

Figure 3.11A presents the kinetics of extracted 2-NBDG concentration as a function of injected 
dose. Immediately after injection, 2-NBDG concentration increases proportionate to the dose 
and reaches a maximum approximately 10 minutes after injection. The extracted 2-NBDG 
concentration then enters a period of cellular uptake, decay and clearance from tissue and 
reaches a steady state concentration beyond 43 minutes. Figure 3.11B shows the extracted 2-
NBDG concentration as a function of dose at 60 minutes, demonstrating exquisite sensitivity of 
the reflectance model to in vivo changes in 2-NBDG concentration. Fasting for longer periods 



increased 2-NBDG absorption proportional to the fasting duration (Fig. 3.11C). Specifically, 
fasting for 12 hours caused a significant increase in 2-NBDG absorption compared to animals 
that were not fasted. Finally, 2-NBDG absorption was significantly higher in 4T1 tumor 
xenografts relative to normal tissue (Fig. 3.11D). 

Plans for year 5:  

Our research strategy for Year 5 involves two key projects: 1. Determining the changes in 
glycolytic demand and vascular oxygenation in tumors in response to targeted therapy and 2. 
Evaluating the ability of optical imaging to measure aerobic glycolysis in vivo. Targeted 
therapies such as PI3K-inhibition can lead to significant ‘normalization’ of the vasculature. This 
can change the delivery and hence uptake of contrast agents such as 2-NBDG. Our goal is to 
evaluate delivery-corrected glycolytic demand in the context of therapy to determine exactly 
when actual glycolytic changes occur and how to separate these effects from inflammation or 
vasodilation which can often lead to misleading conclusions. We also plan to extend our optical 
spectroscopy studies to include measurements of other physiological markers such as lactate 
production and redox ratio. Our goal is to use a combination of endpoints to measure aerobic 
glycolysis in vivo. We will validate our toolbox or endpoints using cell lines that are known to 
exhibit aerobic glycolysis. We will further use this toolbox to measure the bioenergetics of 
therapy-resistant and therapy-sensitive tumors. Our goal at the end of Year 5 is to have a 
validated set of optical endpoints that report on tumor bioenergetics using both single-point 
spectroscopy measurements for early cancers and wide-field imaging for larger biopsy samples 

3. KEY RESEARCH ACCOMPLISHMENTS:  

AIM 1 
 HbSat may be a useful in vivo parameter for determining tumor hypoxia, or for examining 

the local microenvironment, or even for margin assessment of the resected cavity, it is 
not reliable in ex vivo margin assessment of breast tissue specimens.   

 The results from both the simulated and phantom data for [patent blue dye] indicate that 
[patent blue dye] up to 80μM does not impact the extractions of [THb], [β-carotene], or 
<μs′> from the diffuse reflectance spectra. 

 In terms of tissue cauterization, we found that initial measurements of [THb] were 
significantly higher in the benign sites of the cauterized lumpectomies compared to the 
mastectomies.   

 Acquired images using the 49-channel system in 26 patients undergoing partial 
mastectomy or reduction mammoplasty. Of these samples, 18 have been imaged with 
the increased resolution raster scanning technique and pressure sensing.  

 Developed analysis software to invert diffuse reflectance measurements and process 
extracted parameter maps from the 49-channel system. 

 Characterizing performance metrics of the 49-channel system.  
 

AIM 2 

Duke 
 Continued to enroll patients in ex vivo biopsy study which demonstrates the potential of 

using HRME imaging to determine histology of samples during a core needle biopsy 



procedure (n = 55 patients total). We are planning to continue enrolling patients up to n = 
75 in year 5.   

 Applied sparse decomposition algorithm to all images of biopsy specimens and showed 
potential of using it to distinguish between malignant and benign tissue.  

 Outlined methodology for consolidation and classification of biopsies, and are currently 
optimizing our strategy to distinguish positive from negative biopsies. 

Rice 
 Neoplasia can be identified in confocal images with high sensitivity and specificity (Se = 

93%, Sp = 93%), and neoplasia can be identified in confocal images with similar accuracy 
compared to review of histologic images (Se = 93%, Sp = 97%).  

 The mean fluorescence intensity of DCIS (intensely stained nuclei) is higher than IDC, 
normal ducts, and hyperplastic ducts, all described with weakly stained nuclei 

 The parameter which best identifies DCIS in histologic images is standard deviation of 
duct wall width, which separates DCIS from non-neoplastic ducts with a sensitivity of 78% 
and a specificity of 82%, corresponding to an area under the curve of 0.85. The 
combination of two parameters which result in the best separation between DCIS and 
non-neoplastic ducts are standard deviation in duct wall width and number of lumens 
contained within the duct wall, which identify DCIS from non-neoplastic ducts with a 
sensitivity of 78% and a specificity of 86% 

 Parameters for quantitative analysis of duct morphology did not perform as well in 
identifying neoplastic lesions as subjective analysis by visual assessment; sensitivity, 
specificity, and AUC were lower for automated assessment in both confocal and 
histologic images.  

 Preliminary results show that the mean size of adipocytes adjacent to invasive ductal 
tumors is lower than the mean size of adipocytes adjacent to DCIS foci and in normal 
adipose tissue 

 
 
 AIM 3  

 Discovered significant differences in glycolytic demand and oxygenation in metastatic 
4T1 tumors and non-metastatic 4T1 tumors as well as 4T1 tumors exposed to radiation.  

 Developed a delivery-corrected method for measuring true glycolytic demand in vivo. 
 Demonstrated, for the first time, serial titration and quantification of a fluorophore in vivo. 
 Demonstrated the feasibility of combined oxygen saturation and glucose uptake in vivo 

using optical spectroscopy. 

 

 

 

 



4. REPORTABLE OUTCOMES:  

 

AIM 1: 

Journal publications – (published, in review and in progress) 

1. Kennedy S, Geradts J, Caldwell M, Bydlon M, Mulvey C, Mueller J, Barry W, 
Ramanujam N, “Using Breast Tissue Histology to Understand Optical Signatures and 
Improve Optical Margin Assessment.” Breast Cancer Research. (submitted). 

2. Brown, J. Q., and N. Ramanujam, "Leveraging tissue composition and micro-morpholoy 
or breast tumor margin assessment via quantitative diffuse optical spectral 
imaging", PLoS ONE, 2013. 

3. J. Quincy Brown and Torre M. Bydlon, Stephanie A. Kennedy, Matthew L. Caldwell, 
Jennifer E. Gallagher, Marlee Junker, Lee G. Wilke, William T. Barry, Joseph Geradts, 
Nimmi Ramanujam.  "Leveraging Tissue Composition and Micromorphology for Breast 
Tumor Margin Assessment via Quantitative Diffuse Optical Spectral Imaging,” PLoS 
ONE, 2013. 

4. Bydlon TM, Barry WT, Kennedy S, Brown JQ, Gallagher J, Wilke L, Geradts 
J, Ramanujam N..  “Advancing optical imaging for breast margin assessment: an 
analysis of excisional time, cautery, and patent blue dye on underlying sources of 
contrast.”  PLoS One, vol. 7, issue 12, pp. e51418, 12/2012. 

 

AIM 2: 

Journal publications – (published, in review and in progress) 

1. Mueller J, Harmany Z, Mito K, Kennedy S, Kim Y, Dodd L, Geradts J, Kirsch D, Willett R, 
Brown Q, Ramanujam N. Quantitative Segmentation of Fluorescence Microscopy 
Images of Heterogeneous Tissue: Application to the Detection of Residual Disease in 
Tumor Margins. PLoS one, 2013, 8(6): e66198. 

2. Fu H, Mueller J, Javid M, Mito J, Kirsch D, Ramanujam N, Brown Q. Optimization of a 
Widefield Structured Illumination Microscope for Non-Destructive Assessment and 
Quantification of Nuclear Features in Tumor Margins of a Primary Mouse Model of 
Sarcoma. PLoS one, 2013, 8(7): e68868. 

 
Conference abstracts and proceedings 
 

1. Mueller J, Fu H, Mito J, Javid M, Harmany Z, Dodd L, Willett R, Kirsch D, Brown Q, 
Ramanujam N. Quantitative high-resolution fluorescence imaging for in vivo detection of 
residual disease during cancer surgery. NCI-NIBIB Point of Care Technologies for 
Cancer Conference, Bethesda, MD, October 2013.  

2. Mueller J, Harmany Z, Mito K, Kennedy S, Kim Y, Dodd L, Geradts J, Kirsch D, Willett R, 
Brown Q, Ramanujam N. Quantitative segmentation of fluorescence microscopy images 
of heterogeneous tissue: Approach for tuning algorithm parameters. Biomedical 
Spectroscopy, Microscopy, and Imaging, SPIE Photonics West Proceedings Vol. 8587, 
February 2013. 

3. Mueller J, Harmany Z, Mito K, Kennedy S, Kim Y, Dodd L, Geradts J, Kirsch D, Willett R, 
Brown Q, Ramanujam N. Quantitative segmentation of fluorescence microscopy images 



of heterogeneous tissue: Application to the detection of residual disease in tumor 
margins. SPIE Photonics West, San Francisco, CA, February 2013.  

 
Rice 
 
Journal publications – (published, in review and in progress) 
 

1. Dobbs J, Shin D, Krishnamurthy S, Kuerer H, Yang W, Richards-Kortum R: Quantitative 
Analysis of Human Breast Morphology Associated with Progression from Non-
proliferative and Hyperplastic Ducts to Ductal Carcinoma in Situ. (In preparation). 

2. Dobbs J, Ding H, Benveniste A, Krishnamurthy S, Kuerer H, Yang W, Richards-Kortum 
R: Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia 
in fresh human breast tissue. Journal of Biomedical Optics (In press, 2013) 

3. Pierce MC, Yu D, Richards-Kortum R: High resolution fiber optic microendoscopy for in 
situ cellular imaging. Journal of Visualized Experiments.  2011. 47:1-4.  
http://www.jove.com/details.php?id=2306 

Conference abstracts and proceedings 
 

1. Dobbs J, Shin D, Krishnamurthy S, Kuerer H, Yang W, Richards-Kortum R: Quantitative 
Analysis of Morphology Associated with Progression from Non-proliferative and 
Hyperplastic Ducts to Ductal Carcinoma in Situ in Human Breast Tissue. Talk: Frontiers 
in Optics, Optics Society of America, 2013. Oral presentation: October 7, 2013.  

2. Dobbs J, Ding H, Benveniste A, Kuerer H, Krishnamurthy S, Yang W, Richards-Kortum 
R: Confocal Fluorescence Microscopy for Evaluation of Breast Cancer in Human Breast 
Tissue. Poster: Biomedical Optics and 3D Imaging Optics and Photonics Congress. 
Miami, FL: Optical Society of America; 2012. 

3. Dobbs J, Ding H, Benveniste A, Kuerer H, Krishnamurthy S, Yang W, Richards-Kortum 
R: Confocal Fluorescence Microscopy for real-time, high resolution assessment of 
breast cancer morphology. Poster: Biomed OpTex Symposium. College Station, TX, 
May 2012 

 
AIM 3: 
 
Journal publications – (published, in review and in progress) 
 

1. Rajaram N, Frees AE, Fontanella AN, Zhong J, Hansen K, Dewhirst MW, Ramanujam N. 
Delivery rate affects uptake of a fluorescent glucose analog in murine models of 
metastatic breast cancer. PLoS ONE (in press), 2013. 

2. Zhong J, Rajaram N, Brizel DM, Frees AE, Ramanujam N, Batinic-Haberle I, Dewhirst 
MW. Radiation induces aerobic glycolysis through reactive oxygen species. 
Radiotherapy and Oncology 106(1): 390-396, 2013. 

3. Rajaram N, Reesor A, Mulvey CS, Ramanujam N. Reflectance spectroscopy is sensitive 
to absorption of a fluorophore in vivo. (in preparation) 

4. Frees AE, Rajaram N, McCachren S, Dewhirst MW, Ramanujam N. Delivery-corrected 
uptake of a fluorescent glucose analog accurately measures glycolytic demand.  



 
Conference abstracts and proceedings 
 

1. Frees, AE, Rajaram N, McCachren S, Dewhirst MW, Ramanujam N. Optical monitoring 
of glucose demand and vascular delivery in a preclinical murine model SPIE Photonics 
West, San Francisco, CA, 2014 (accepted as a talk). 

2. Rajaram N, Frees AE, Zhong J, Dewhirst MW, Ramanujam N. Optical imaging and 
spectroscopy of tumor bioenergetics. BMES Annual Meeting, Seattle, WA, Sep 25-28, 
2013. 

3. Rajaram N, Frees AE, Dewhirst MW, Ramanujam N. Optical toolbox to measure tumor 
bioenergetics  in vivo. Chance Centennial Symposium, Philadelphia, PA, June 16-18, 
2013. 

 

5. CONCLUSIONS:    

Aim 1 

We are now characterizing the performance metrics of the 49-channel system and comparing it 
to the clinical criteria for intra-operative tumor margin assessment. These metrics include SNR, 
sensing depth, cross-talk, reproducibility, resolution, speed, drift, phantom study accuracy, and 
channel uniformity.  
 
We have improved upon the system by designing and fabricating and imaging platform that 
enables the techniques of raster scanning and pressure sensing. The custom pressure-sensitive 
imaging platform allows the user to control the pressures that are maintained at the specimen to 
probe interface. Raster scanning allows for increased resolution by scanning interleaving 
spaces. LabVIEW software automates the acquisition such that user-specific error is eliminated 
with the motorized stage that applies pressure and performs raster-scanning. There is a trade-
off between time for raster scanning and the amount of time allotted to measure in the clinic. 
This trade-off between time and raster scanning has been optimized such that we can image 
with 1.2mm resolution within the timeframe allowed in the intraoperative setting. These additions 
to the 49-channel system have been tested clinically on a cohort of 26 patients undergoing 
lumpectomy and reduction mammoplasty surgeries.  
 

Aim 2 

Duke 
The ex vivo biopsy study demonstrates that high resolution fluorescence imaging of acriflavine 
stained tissue combined with an algorithm that leverages sparse decomposition analysis 
provides a rapid, non-destructive and automated strategy for quantitative pathology of thick 
tissues with non-uniform background heterogeneity. We will identify additional 
endpoints/parameters that have diagnostic potential, optimize our variable consolidation 
strategy, and build predictive models that can quantitatively diagnose high resolution images in 
Year 5. 



Rice 
The goal of this proposal was to develop and apply imaging systems and molecular contrast 
agents which can be used in patients to 1) improve early detection and rapid assessment of 
breast cancer lesions, 2) aid in selection of targeted therapeutics, and 3) monitor the efficacy of 
these.  
 
Confocal fluorescence microscopy was compared to histology with H&E staining for 
classification of neoplastic lesions based on visual assessment and we found that readers 
identified neoplasia in confocal and histologic with similar accuracy. We demonstrated that 
mean fluorescence intensity, a parameter of confocal images, is significantly different in DCIS 
lesions vs. invasive carcinoma and non-neoplastic ducts.  
Thus, we show that confocal images of fresh human breast tissue provide sufficient information 
to enable discernment of neoplastic and non-neoplastic breast features, which has potential to 
improve rapid assessment of breast cancer lesions 
 
Quantitative analysis of features of breast architecture, including adipocytes and ducts, shows 
that there are significant differences in breast morphology at neoplastic and non-neoplastic 
sites. We found that adipocyte area is lower when adjacent to some lesions of invasive ductal 
carcinoma than in normal tissue adjacent to collagenous tissue. Quantitative parameters of duct 
morphology such as duct wall width, duct area, and number of lumens are associated with 
diagnostic categories of duct and that parameters had similar performance for classification of 
DCIS in both types of images.  These findings indicate that physical parameters of breast 
morphology could be used to rapidly assess breast lesions and to monitor disease progression 
and regression.  
 

Aim 3 

Although a number of studies have illustrated the significance of the Warburg effect and its 
relationship to tumor aggressiveness, a majority was conducted in cell culture in the absence of 
a true microenvironment. High-resolution imaging of glucose uptake and vascular oxygenation 
status, as described here can provide unprecedented spatial information and help us 
understand the relationship between both parameters. Intravital microscopy can provide 
quantitative measures of in vivo tumor biomarkers, either endogenous or exogenous. It is non-
invasive, permitting short-term repeated measurements on the same animal can continuously 
monitor changes in tumor microvasculature and more importantly study, at a high resolution, the 
cells adjacent to these blood vessels.  

 

Our findings suggest that simply measuring glucose tracer uptake at a specific time-point is 
inadequate; knowledge of tracer kinetics and SO2 as well is important to assess the tumor 
micro-environment. A natural follow-up to this study would be to correlate longitudinal measures 
of endpoints derived in this study with metastatic progression and tumor recurrence in pre-
clinical models of breast cancer.  Such studies could potentially provide biomarkers to predict 
long-term outcome in breast tumors at the time of detection. 



We are currently developing and validating the endpoints derived in this study using optical 
spectroscopy. Optical spectroscopy affords the ability to make repeated and noninvasive in vivo 
measurements of tumor morphology and function over a long period of time. The results of this 
study also hold true for other imaging modalities such as PET in clinical studies and whole 
animal fluorescence molecular tomography (FMT) that may be used  in pre-clinical studies to 
measure tumor glucose demand in response to therapeutic strategies such as targeted 
molecular agents or radiation 
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